DOI QR코드

DOI QR Code

Dynamic analysis and performance optimization of permendur cantilevered energy harvester

  • Ghodsi, Mojtaba (Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University) ;
  • Ziaiefar, Hamidreza (Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University) ;
  • Mohammadzaheri, Morteza (Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University) ;
  • Omar, Farag K. (Mechanical Engineering Department, College of Engineering, United Arab Emirates University) ;
  • Bahadur, Issam (Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University)
  • Received : 2018.09.16
  • Accepted : 2019.04.08
  • Published : 2019.05.25

Abstract

The development of the low power application such as wireless sensors and health monitoring systems, attract a great attention to low power vibration energy harvesters. The recent vibration energy harvesters use smart materials in their structures to convert ambient mechanical energy into electricity. The frequent model of this harvesters is cantilevered beam. In the literature, the base excitation cantilevered harvesters are mainly investigated, and the related models are presented. This paper investigates a tip excitation cantilevered beam energy harvester with permendur. In the first section, the mechanical model of the harvester and magneto-mechanical model of the permendur are presented. Later, to find the maximum output of the harvester, based on the response surface method (RSM), some experiments are done, and the results are analyzed. Finally, to verify the results of RSM, a harvester with optimum design variables is made, and its output power is compared. The last comparison verifies the estimation of the RSM method which was about $381{\mu}W/cm^3$.

Keywords

Acknowledgement

Supported by : Sultan Qaboos University in Oman

References

  1. Aloufi, M. and Kazmierski, T.J. (2011), "A response surface modelling approach to performance optimisation of kinetic energy harvesters", Int. J. Res. Rev. Comput.Sci.: 1.
  2. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H. and Chen, L.Q. (2017), "Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester", J. Sound Vib., 391, 35-49. https://doi.org/10.1016/j.jsv.2016.12.019
  3. Ghodsi, M. (2015), "Optimization of mover acceleration in DC tubular linear direct-drive machine using response surface method", Int. Rev. Elec. Eng., 10(4), 492-500.
  4. Ghodsi, M., Ueno, T. and Higuchi, T. (2008), "Novel .magnetostrictive bimetal actuator using permendur", Adv. Mater. Res., 47-50, 262-265. https://doi.org/10.4028/www.scientific.net/AMR.47-50.262.
  5. Ghodsi, M., Modabberifar, M. and Ueno, T. (2011), "Quality factor, static and dynamic responses of miniature galfenol actuator at wide range of temperature", Int. J. Phys. Sci., 6(36): 8143-8150. DOI: 10.5897/IJPS11.918.
  6. Ghodsi, M., Ueno, T., Teshima, H., Hirano, H., Higuchi, T. and Summers, E. (2007), "'Zero-power' positioning actuator for cryogenic environments by combining magnetostrictive bimetal and HTS", Sensor. Actuat. A: Phys., 135(2), 787-791. https://doi.org/10.1016/j.sna.2006.09.002.
  7. Ghodsi, M., Ziaiefar, H., Alam, K., Mohammadzaheri, M., Al-Yahmedi, A. and Omar, F.K. (2018), "Electromechanical modelling and experimental verification of cantilevered permendur energy harvester", Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
  8. Ghodsi, M., Mirzamohamadi, S., Talebian, S., Hojjat, Y., Sheikhi, M., Al-Yahmedi, A. and O zer, A. (2015), "Analytical, numerical and experimental investigation of a giant magnetostrictive (GM) force sensor", Sensor Review, 35(4), 357-365. https://doi.org/10.1108/SR-12-2014-0760.
  9. Ghodsi, M., Ziaiefar, H., Alam, K., Mohammadzahcri, M., Al-Yahmedi, A., Ghodsi, M.H. and Omar, F.K. (2018), "Electromechanical modelling and experimental verification of cantilevered permendur energy harvester", Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE.
  10. Ghodsi, M., Hosseinzadeh, N., Ozer, A., H.R,. Dizaj, Y., Hojjat, Y., Varzeghani, N.G., Sheykholeslami, M.R., Talebian, S., Ghodsi M.H. and Al-Yahmadi, A. (2017), "Development of gasoline direct injector using giant magnetostrictive materials", IEEE T. Ind. Appl., 53(1), 521-529. DOI: 10.1109/TIA.2016.2606591.
  11. Hoshyarmanesh, H., Nehzat, N., Salehi, M., Ghodsi, M., Lee, H.S. and Park, H.H. (2014), "Piezoelectric transducers on curved dispersive bending wave and poke-charged touch screens", Mater. Manuf. Process., 29(7), 870-876. https://doi.org/10.1080/10426914.2014.921710.
  12. Karafi, M.R., Ghodsi, M. and Hojjat, Y. (2015), "Development of magnetostrictive resonant torsional vibrator", IEEE T. Magnetics, 51(9), 1-8. DOI: 10.1109/TMAG.2015.2427279.
  13. Karafi, M.R., Hojjat, Y., Sassani, F. and Ghodsi, M. (2013), "A novel magnetostrictive torsional resonant transducer", Sensor. Actuat. A: Phys., 195, 71-78. https://doi.org/10.1016/j.sna.2013.03.015.
  14. Kumar, T., Kumar, R., Chauhan, V.S. and Twiefel, J. (2015), "Finite-element analysis of a varying-width bistable piezoelectric energy harvester", Energy Technol., 3(12): 1243-1249. https://doi.org/10.1002/ente.201500191.
  15. Lefeuvre, E., Audigier, D., Richard, C. and Guyomar, D. (2007), "Buck-boost converter for sensorless power optimization of piezoelectric energy harvester", IEEE T. Power Electr., 22(5), 2018-2025. https://doi.org/10.1109/TPEL.2007.904230
  16. Li, X., Zhang, Y., Ding, H. and Chen, L. (2017), "Integration of a nonlinear energy sink and a piezoelectric energy harvester", Appl. Math. Mech., 38(7), 1019-1030. https://doi.org/10.1007/s10483-017-2220-6
  17. Li, X., Zhang, Y.W. Ding, H. and Chen, L.Q. (2018), "Dynamics and evaluation of a nonlinear energy sink integrated by a piezoelectric energy harvester under a harmonic excitation", J. Vib. Control, https://doi.org/10.1177/1077546318802456.
  18. Sheykholeslami, M., Hojjat, Y., Ghodsi, M., Kakavand, K. and Cinquemani, S. (2015), "Investigation of ${\Delta}E$ effect on vibrational behavior of giant magnetostrictive transducers", J. Shock Vib., 2015, 1-9. http://dx.doi.org/10.1155/2015/478045
  19. Sheykholeslami, M., Hojjat, Y., Ghodsi, M., Zeighami, M. and Kakavand, K. (2016), "Effect of magnetic field on mechanical properties in Permendur", Mater. Sci. Eng., A 651, 598-603. https://doi.org/10.1016/j.msea.2015.10.027.
  20. Sheykholeslami, M.R., Hojjat, Y., Cinquemani, S., Ghodsi, M. and Karafi, M. (2016), "An approach to design and fabrication of resonant giant magnetostrictive transducer", Smart Struct. Syst.,17(2), 313-325. https://doi.org/10.12989/sss.2016.17.2.313.
  21. Xia, M., Luo, C., Su, X., Li, Y., Li, P., Hu, J., Li, G., Jiang, H. and Zhang, W. (2019), "KNN/PDMS/C-based lead-free piezoelectric composite film for flexible nanogenerator", J. Mater. Sci. : Mater. Electron., 1-9. https://doi.org/10.1007/s10854-019-01070-0.
  22. Zhang, G., Li, M., Li, H., Wang, Q. and Jiang, S. (2018), "Harvesting energy from human activity: Ferroelectric energy harvesters for portable, implantable, and biomedical electronics", Energy Technol., 6(5),791-812. https://doi.org/10.1002/ente.201700622.

Cited by

  1. Modifications on F2MC tubes as passive tunable vibration absorbers vol.28, pp.2, 2019, https://doi.org/10.12989/sss.2021.28.2.153