Acknowledgement
Supported by : National Natural Science Foundation of China, China Scholarship Council
References
- Alvarez-Fernandez, M.I., Gonzalez-Nicieza, C., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2005), "Generalization of the n-k influence function to predict mining subsidence", Eng. Geol., 80(1-2), 1-36. https://doi.org/10.1016/j.enggeo.2005.02.004.
- Ambrozic, T. and Turk, G. (2003), "Prediction of subsidence due to underground mining by artificial neural networks", Comput. Geosci., 29(5), 627-637. https://doi.org/10.1016/S0098-3004(03)00044-X.
- Andersland, O.B. and Akili, W. (2015), "Stress effect on creep rates of a frozen clay soil", Geotechnique, 17(1), 27-39. https://doi.org/10.1680/geot.1967.17.1.27.
- Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kaab, A., Heim, B., and Boike, J. (2018), "Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry", Remote Sens., 10(4), 494. https://doi.org/10.3390/rs10040494.
- Azadegan, O., Li, J. and Jafari, S.H. (2014), "Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests", Geomech. Eng., 7(3), 247-261. https://doi.org/10.12989/gae.2014.7.3.247
- Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2011), "Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions", Cold Reg. Sci. Technol., 68(1-2), 85-90. https://doi.org/10.1016/j.coldregions.2011.05.002
- Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2012), "Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils", Cold Reg. Sci. Technol., 83-84, 103-109. https://doi.org/10.1016/j.coldregions.2012.07.002.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chen, J., Du, C., Jiang, D., Fan, J. and He, Y. (2016), "The mechanical properties of rock salt under cyclic loading- unloading experiments", Geomech. Eng., 10(3), 325-334. https://doi.org/10.12989/gae.2016.10.3.325.
- Cheng, X.S. (1989), Applied Theory of Plates and Shells, Shandong Science & Technology Press, Ji'nan, China (in Chinese).
- Cheng, Z.B., Zhang, Y.N., Li, L.H. and Lv, H.Y. (2018), "Theoretical solution and analysis of the elastic modulus and foundation coefficient of coal-rock combination material", Int. J. Mater. Sci Res., 1(1), 23-31. https://doi.org/10.18689/ijmsr-1000104
- Christ, M. and Kim, Y. (2009), "Experimental study on the physical-mechanical properties of frozen silt", KSCE J. Civ. Eng., 13(9), 317-324. https://doi.org/10.1007/s12205-009-0317-z.
- Dai, H.D., Yin, M.L., He, T.Y., Liu, k., Li, T. and Zheng, T.Q. (2014), "Research on the mechanical and thermophysical properties of frozen Soil in cretaceous formation", Appl. Mech. Mater., 580-583, 962-965. https://doi.org/10.4028/www.scientific.net/AMM.580-583.962.
- Evans, S.G., Ge, S., Voss, C.I., and Molotch, N.P. (2018), "The role of frozen soil in groundwater discharge predictions for warming alpine watersheds", Water Resour. Res., 54(3), 1599-1615. https://doi.org/10.1002/2017WR022098.
- Fu, Q., Wang, E., Li, T., and Hou, R. (2018), "Impact factors and dynamic simulation of tillage-layer temperature in frozen-thawed soil under different cover conditions", Int. J. Agr. Biol. Eng., 11(2), 101-107. https://doi.org/10.25165/j.ijabe.20181102.3068
- Hatheway, H.W. (2009), "The complete ISRM suggested methods for rock characterization, testing and monitoring, 1974-2006", Environ. Eng. Geosci., 15(1), 47-48. https://doi.org/10.2113/gseegeosci.15.1.47.
- He, G.L. (2009), "Determination of critical thickness of stiff roof in coal mine based on thick plate theory", Chin. J. Undergr. Sp. Eng., 5(4), 659-664 (in Chinese). https://doi.org/10.3969/j.issn.1673-0836.2009.04.007
- Hejmanowski, R. and Malinowska, A. (2009), "Evaluation of reliability of subsidence prediction based on spatial statistical analysis", Int. J. Rock Mech. Min., 46(2), 432-438. https://doi.org/10.1016/j.ijrmms.2008.07.012.
- Li, G.D., Zhang, H.S. and Li, H.H. (2013), "The comparative analysis of probability integration and numerical simulation in surface subsidence prediction", Appl. Mech. Mater., 295-298, 3015-3018. https://doi.org/10.4028/www.scientific.net/AMM.295-298.3015.
- Li, H., Zhu, Y., Zhang, J. and Lin, C. (2004), "Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay", Cold Reg. Sci. Technol., 39(1), 39-45. https://doi.org/10.1016/j.coldregions.2004.01.001
- Li, P.X., Tan, Z.X., Yan, L.L. and Deng, K.Z. (2011), "Time series prediction of mining subsidence based on a SVM", Int. J. Rock Mech. Min. Sci., 21(4), 557-562. https://doi.org/10.1016/j.mstc.2011.02.025.
- Liu, F., Guo, Z.R., Lv, H.Y., and Cheng, Z.B. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.
- Liu, X.J. and Cheng, Z.B. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. I. Min. Metall., 119(2), 201-206. http://dx.doi.org/10.17159/2411-9717/2019/v119n2a12.
- Lv, H.Y., Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
- Nie, L., Wang, H., Xu, Y. and Li, Z. (2015), "A new prediction model for mining subsidence deformation: the arc tangent function model", Nat. Hazards, 75(3), 2185-2198. https://doi.org/10.1007/s11069-014-1421-z.
- Qin, S., Wang, S., Long, H., Liu, J., Qin, S. and Wang, S. (1999), "A new approach to estimating geo-stresses from laboratory Kaiser effect measurements", Int. J. Rock Mech. Min., 36(8), 1073-1077. https://doi.org/10.1016/S1365-1609(99)00068-4.
- Shang, T.L., Suo, Y.L. and Liu, Y.W. (2017), "Research on ascending mining in multiple coal seams under permafrost", Coal Technol., 36(7), 20-22 (in Chinese).
- Suo, Y.L. and Fan, Q.Q. (2014), "Study on rational exploiting elevation limit of coal mine with permafrost layer", Coal Technol., 33(5), 149-151 (in Chinese). https://doi.org/10.13301/j.cnki.ct.2014.05.056
- Sun, W.B., Du, H.Q., Zhou, F., and Shao, J.L., (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
- Tu, Y.L., Zhong, Z.L., Luo, W.K., Liu, X.R. and Wang, S. (2016), "A modified shear strength reduction finite element method for soil slope under wetting-drying cycles", Geomech. Eng., 11(6), 739-756. https://doi.org/10.12989/gae.2016.11.6.739.
- Viso, J.R.D., Carmona, J.R. and Ruiz, G. (2008), "Shape and size effects on the compressive strength of high-strength concrete", Cement Concrete Res., 38(3), 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020Get.
- Wang, M., Meng, S., Yuan, X., Sun, Y., and Zhou, J. (2018), "Experimental validation of vibration-excited subsidence model of seasonally frozen soil under cyclic loads", Cold Reg. Sci. Technol., 146, 175-181. https://doi.org/10.1016/j.coldregions.2017.11.001.
- Wang, T., Zhou, G., Wang, J. and Yin, L. (2017), "Stochastic thermal-mechanical characteristics of frozen soil foundation for a transmission line tower in permafrost regions", Int. J. Geomech., 18(3), 06017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001087.
- Wang, Z.H. and Cheng, Z.B. (2016), "Hard roof fracturing form and dynamic disaster control in short island mining face", Chin. J. Rock Mech. Eng., 35(S2), 4018-4028 (in Chinese).
- Wu, X., Zhao, L., Liu, G., Xu, H., Zhang, X. and Ding, Y. (2018), "Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau", Appl. Soil Ecol., 128, 81-88. https://doi.org/10.1016/j.apsoil.2018.04.007.
- Xu, H., Liu, B. and Fang, Z. (2014), "New grey prediction model and its application in forecasting land subsidence in coal mine", Nat. Hazards, 71(2), 1181-1194. https://doi.org/10.1007/s11069-013-0656-4.
- Xu, N., Kulatilake, P.H.S.W., Tian, H., Wu, X., Nan, Y. and Wei, T. (2013), "Surface subsidence prediction for the WUTONG mine using a 3-D finite difference method", Comput. Geotech., 48(3), 134-145. https://doi.org/10.1016/j.compgeo.2012.09.014.
- Xu, G., Wu, W., Kong, L. and Qi, J. (2018), "Hypoplastic modeling for the mechanical behavior of frozen soil in stress path testing", Int. J. Geomech., 18(6), 04018049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001117.
- Yang, S.L., Wang, Z.H., Kong, D.Z., Cheng, Z.B. and Song, G.F., (2016), "Overlying strata failure process and support resistance determination in large mining height face", Chin. J. Rock Mech. Eng., 33(2), 199-207. (in Chinese)
- Yang, X., Wen, G., Dai, L., Sun, H. and Li, X. (2019), "Ground subsidence and surface cracks evolution from shallow-buried close-distance multi-seam mining: a case study in Bulianta Coal Mine", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-018-1726-4.
- Yao, Y., Chen, J., Li, T., Fu, B., Wang, H., Li, Y. and Jia, H. (2019), "Soil liquefaction in seasonally frozen ground during the 2016 Mw6.6 Akto earthquake", Soil Dyn. Earthq. Eng., 117, 138-148. https://doi.org/10.1016/j.soildyn.2018.08.024.
- Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behavior of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.
- Zhao, G. and Zhou, S. (2015), "Determining safe thickness of roof in subsea mining based on thick plate theory", Chin. J. Geological Hazard Control, 26(4), 60-66.
- Zhou, D., Wu, K., Miao, X. and Li, L. (2018a), "Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer", B Eng. Geol. Environ., 77(1), 283-304. https://doi.org/10.1007/s10064-016-0961-8.
- Zhou, Z., Yang, H., Xing, K., and Gao, W. (2018b), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. https://doi.org/10.12989/gae.2018.15.2.783.
Cited by
- Laboratory investigation of the mechanical properties of coal-rock combined body vol.79, pp.4, 2019, https://doi.org/10.1007/s10064-019-01613-z
- Experimental research on the effect of water-rock interaction in filling media of fault structure vol.24, pp.5, 2019, https://doi.org/10.12989/gae.2021.24.5.471
- Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2019, https://doi.org/10.12989/sem.2021.79.2.237