Acknowledgement
Supported by : Central Universities
References
- Brace, W.F., Walsh, J.B. and Frangos, W.T. (1968), "Permeability of granite under high pressure", J. Geophys. Res., 73(6), 2225-2236. https://doi.org/10.1029/JB073i006p02225.
- Chen, G.Q., Li, T.B., Wang, W., Guo F. and Yin HY. (2017a), "Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests", Geomech. Eng., 13(1), 63-77. https://doi.org/10.12989/gae.2017.13.1.063
- Chen, L., Wang, P., Liu, J.F., Li, Y., Liu, J. and Wang, J. (2017b), "Effects of temperature and stress on the time-dependent behavior of Beishan granite", Int. J. Rock Mech. Min. Sci., 93, 316-323. https://doi.org/10.1016/j.ijrmms.2016.11.007.
- Chopra, P.N. (1997), "High-temperature transient creep in olivine rocks", Tectonophysics, 279(1-4), 93-111. https://doi.org/10.1016/S0040-1951(97)00134-0.
- David, C., Menendez, B. and Darot, M. (1999), "Influence of stress-induced and thermal cracking on physical properties and microstructure of la peyratte granite" Int. J. Rock Mech. Min. Sci., 36(4), 433-448. https://doi.org/10.1016/S0148-9062(99)00010-8.
- Dragon, A. and Mroz, Z.A. (1978), "Continuum model for plasticbrittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137. https://doi.org/10.1016/0020-7225(79)90058-2.
- Gautam, P.K., Verma, A.K., Jha, M.K., Sarkar, K., Singh, T.N. and Bajpai, R.K. (2016), "Study of strain rate and thermal damage of Dholpur sandstone at elevated temperature", Rock Mech. Rock Eng., 49(9), 1-11. https://doi.org/10.1007/s00603-016-0965-5.
- Geraud, Y. (1994) "Variations of connected porosity and inferred permeability in a thermally cracked granite", Geophys. Res. Lett., 21(11), 979-982. https://doi.org/10.1029/94GL00642.
-
Glover, P.W.J., Baud, P., Darot, M., Meredith, P.G., Boon, S.A., LeRevelec, M., Zoussi, S. and Reuschle, T. (1995), "
${\alpha}/{\beta}$ phase transition in quartz monitored using acoustic emissions", Geophys. J. Int., 120(3), 775-782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x. - Hajpal, M. (2002), "Changes in sandstones of historical Monuments Exposed to fire or high temperature", Fire Technol., 38(4), 373-382. https://doi.org/10.1023/A:102017450.
- Hajpal, M. and Torok, A. (1989), "Petrophysical and mineralogical studies of burnt sandstones", Proceedings of the 2nd International PhD Symposium in Civil Engineering, Budapest, Hungary.
- Hajpal, M. and Torok, A. (2004), "Mineralogical and colour changes of quartz sandstones by heat", Environ. Geol., 46(3-4), 311-322. https://doi.org/10.1007/s00254-004-1034-z.
- Heap, M.J., Baud, P. and Meredith, P.G. (2009), "Influence of temperature on brittle creep in sandstones", Geophys. Res. Lett., 36(19), L19305. https://doi.org/10.1029/2009GL039373.
- Heuze, F.E. (1983), "High-temperature mechanical, physical and thermal properties of granitic rocks-a review", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(1), 3-10. https://doi.org/10.1016/0148-9062(83)91609-1.
- Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007.
- Hudson, J.A., Stephansson, O. and Andersson, J. (2005), "Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories", Int. J. Rock Mech. Min. Sci., 42(5-6), 850-870. https://doi.org/10.1016/j.ijrmms.2005.03.018.
- ISRM (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.
- Kong, B., Wang, E.Y., Li, Z.H., Wong, X.R., Liu, X.F., Li, N. and Yang, Y.L. (2016), "Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment", Eng. Geol., 209, 82-92. https://doi.org/10.1016/j.enggeo.2016.05.009.
- Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Shao, S., Chen, B.K., Lashin, A.A.I, Arifi, N. and Rathnaweera, T.D. (2017), "Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction", Geothermics, 65, 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002.
- Lan, J.L. (2009), "A study of the mechanical properties of sandstone after cyclic thermal action", M.Sc. Dissertation, National Cheng Kung University, Taiwan.
- Liu, X., Yuan, S., Sieffert, Y., Fityus, S. and Buzzi, O. (2016), "Changes in mineralogy, microstructure, compressive strength and intrinsic permeability of two sedimentary rocks subjected to high-temperature heating", Rock Mech. Rock Eng., 49(8), 2985-2998. https://doi.org/10.1007/s00603-016-0950-z.
- Lu, C., Sun, Q., Zhang, W.Q., Geng, J.S., Qi, Y.M. and Lu, L.L. (2017), "The effect of high temperature on tensile strength of sandstone", Appl. Thermal Eng., 111, 573-579. https://doi.org/10.1016/j.applthermaleng.2016.09.151.
- Luo, J. and Wang, L. (2011), "High-temperature mechanical properties of mudstone in the process of underground coal gasification", Rock Mech. Rock Eng., 44(6), 749. https://doi.org/10.1007/s00603-011-0168-z.
- Lyons, K.D., Honeygan, S. and Moroz, T. (2007), "NETL extreme drilling laboratory studies high pressure high temperature drilling phenomena", J. Energy Resour. Technol., 130(4), 791-796. https://doi.org/10.1115/1.3000139.
- Minchener, A.J. (2005), "Coal gasification for advanced power generation", Fuel, 84(17), 2222-2235. https://doi.org/10.1016/j.fuel.2005.08.035.
- Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35(3), 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7.
- Moradi, S.S.T., Nikolaev, N.I., Chudinova, I.V. and Martel A.S. (2018), "Geomechanical study of well stability in high-pressure, high-temperature conditions", Geomech. Eng., 16(3), 331-339. http://dx.doi.org/10.12989/gae.2018.16.3.331.
- Otto, C. and Kempka, T. (2015), "Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes", Energies, 8(6), 5800-5827. https://doi.org/10.3390/en8065800.
- Ranjith, P.G., Daniel, R.V., Chen, B.J. and Perera, M.S.A. (2012), "Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure", Eng. Geol., 151, 120-127. https://doi.org/10.1016/j.enggeo.2012.09.007.
- Scott, T.E. and Nielsen, K.C. (1991), "The effects of porosity on the brittle-ductile transition in sandstones", J. Geophys. Res., 96 (B1), 405-414. https://doi.org/10.1029/90JB02069.
- Shafiei, A. and Dusseault, M.B. (2013), "Geomechanics of thermal viscous oil production in sandstones", J. Petrol. Sci. Eng., 103(3), 121-139. https://doi.org/10.1016/j.petrol.2013.02.001.
- Sirdesai, N.N., Singh, T.N., Ranjith, P.G. and Singh, R. (2017), "Effect of varied durations of thermal treatment on the tensile strength of red sandstone", Rock Mech. Rock Eng., 50(1), 1-9. https://doi.org/10.1007/s00603-016-1047-4.
- Somerton, W.H. (1992), Thermal Properties and Temperaturerelated Behavior of Rock/Fluid Systems, Elsevier, Amsterdam, The Netherlands, 22-29.
- Sun, H., Sun, Q., Deng, W., Zhang, W. and Chao, L. (2017), "Temperature effect on microstructure and p-wave propagation in Linyi sandstone", Appl. Thermal Eng., 115, 913-922. https://doi.org/10.1016/j.applthermaleng.2017.01.026.
- Sun, Q., Lu, C., Cao, L.W., Li, W.C., Geng, J.S. and Zhang, W.Q. (2016), "Thermal properties of sandstone after treatment at high temperature", Int. J. Rock Mech. Min. Sci., 85, 60-66. https://doi.org/10.1016/j.ijrmms.2016.03.006.
- Tang, F.R., Wang, L.G., Lu, Y.L. and Yang, X.Q. (2015), "Thermophysical properties of coal measure strata under high temperature", Environ. Earth Sci., 73(10), 6009-6018. https://doi.org/10.1007/s12665-015-4364-0.
- The National Standards Compilation Group of People Republic's China. (2009), Methods for Determining the Physical and Mechanical Properties of Coal and Rock-Part 4: Methods for Calculating the Porosity of Coal and Rock (GB/T23561.4), China Planning Press, Beijing, China (in Chinese).
- Tian, H., Kempka, T., Xu, N.X. and Ziegle, M. (2012), "Physical properties of sandstones after high temperature treatment", Rock Mech. Rock Eng., 45(6), 1113-1117. https://doi.org/10.1007/s00603-012-0228-z.
- Tiskatine, R., Eddemani, A., Gourdo, L., Abnay, B., Ihlal, A., Aharoune, A. and Bouirden, L. (2016), "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage", Appl. Energy, 171, 243-255. https://doi.org/10.1016/j.apenergy.2016.03.061.
- Uribe-Patino, J.A., Alzate-Espinosa, G.A. and Arbelaez-Londono, A. (2017), "Geomechanical aspects of reservoir thermal alteration: A literature review", J. Petrol. Sci. Eng., 152, 250-266. https://doi.org/10.1016/j.petrol.2017.03.012.
- Wu, Q.H., Weng, L., Zhao, Y.L., Guo B.H. and Tao L. (2019), "On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates", Eng. Geol., 253, 94-110. https://doi.org/10.1016/j.enggeo.2019.03.014.
- Wu, Z., Qin, B.D., Chen, L.J. and Luo, Y.Y. (2005), "Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature", Chin. J. Rock Mech. Eng., 24(11), 1863-1867 (in Chinese). https://doi.org/10.3321/j.issn:1000-6915.2005.11.008
- Xu, P. and Yang, S.Q. (2016), "Permeability evolution of sandstone under short-term and long-term triaxial compression", Int. J. Rock Mech. Min. Sci., 85, 152-164. https://doi.org/10.1016/j.ijrmms.2016.03.016.
- Yang, S.Q., Hu, B., Ranjith, P. and Xu P. (2018a), "Multi-step loading creep behavior of red sandstone after thermal treatments and a creep damage model", Energies, 11(1), 212. https://doi.org/10.3390/en11010212.
- Yang, S.Q. and Hu, B. (2018b), "Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments", Rock Mech. Rock Eng., 51(10), 2981-3004. https://doi.org/10.1007/s00603-018-1528-8.
- Yang, S.Q., Jing, H.W. and Cheng, L. (2014), "Influences of pore pressure on short-term and creep mechanical behavior of red sandstone", Eng. Geol., 179, 10-23. https://doi.org/10.1016/j.enggeo.2014.06.016.
- Yang, S.Q., Xu, P., Li, Y.B. and Huang, Y.H. (2017), "Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments", Geothermics, 69, 93-109. https://doi.org/10.1016/j.geothermics.2017.04.009.
- Ye, G.L., Nishimura, T. and Zhang, F. (2015), "Experimental study on shear and creep behaviour of green tuff at high temperatures", Int. J. Rock Mech. Min. Sci., 79, 19-28. https://doi.org/10.1016/j.ijrmms.2015.08.005.
- Zhang, P., Mishra, B. and Heasley, K.A. (2015), "Experimental investigation on the influence of high pressure and high temperature on the mechanical properties of deep reservoir rocks", Rock Mech. Rock Eng., 48(6), 2197-2211. https://doi.org/10.1007/s00603-015-0718-x.
- Zhang, W., Sun, Q., Hao, S., Geng, J. and Lv, C. (2016), "Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment", Appl. Thermal Eng., 98, 1297-1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010.
Cited by
- Analytical-Based Assessment of Effect of Highly Deformable Elements on Tunnel Lining Within Viscoelastic Rocks vol.12, pp.3, 2019, https://doi.org/10.1142/s1758825120500301