DOI QR코드

DOI QR Code

Creep-permeability behavior of sandstone considering thermal-damage

  • Hu, Bo (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Yang, Sheng-Qi (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Tian, Wen-Ling (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2019.03.06
  • Accepted : 2019.04.24
  • Published : 2019.05.20

Abstract

This investigation presented conventional triaxial and creep-permeability tests on sandstones considering thermally-induced damage (TID). The TID had no visible effects on rock surface color, effective porosity and permeability below $300^{\circ}C$ TID level. The permeability enlarged approximately two orders of magnitude as TID increased to $1000^{\circ}C$ level. TID of $700^{\circ}C$ level was a threshold where the influence of TID on the normalized mass and volume of the specimen can be divided into two linear phases. Moreover, no prominent variations in the deformation moduli and peak strength and strain appeared as TID< $500^{\circ}C$ level. It is interesting that the peak strength increased by 24.3% at $700^{\circ}C$ level but decreased by 11.5% at $1000^{\circ}C$ level. The time-related deformation and steady-state creep rate had positive correlations with creep loading and the TID level, whereas the instantaneous modulus showed the opposite. The strain rates under creep failure stresses raised 1-4 orders of magnitude than those at low-stress levels. The permeability was not only dependent on the TID level but also dependent on creep deformation. The TID resulted in large deformation and complexity of failure pattern for the sandstone.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. Brace, W.F., Walsh, J.B. and Frangos, W.T. (1968), "Permeability of granite under high pressure", J. Geophys. Res., 73(6), 2225-2236. https://doi.org/10.1029/JB073i006p02225.
  2. Chen, G.Q., Li, T.B., Wang, W., Guo F. and Yin HY. (2017a), "Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests", Geomech. Eng., 13(1), 63-77. https://doi.org/10.12989/gae.2017.13.1.063
  3. Chen, L., Wang, P., Liu, J.F., Li, Y., Liu, J. and Wang, J. (2017b), "Effects of temperature and stress on the time-dependent behavior of Beishan granite", Int. J. Rock Mech. Min. Sci., 93, 316-323. https://doi.org/10.1016/j.ijrmms.2016.11.007.
  4. Chopra, P.N. (1997), "High-temperature transient creep in olivine rocks", Tectonophysics, 279(1-4), 93-111. https://doi.org/10.1016/S0040-1951(97)00134-0.
  5. David, C., Menendez, B. and Darot, M. (1999), "Influence of stress-induced and thermal cracking on physical properties and microstructure of la peyratte granite" Int. J. Rock Mech. Min. Sci., 36(4), 433-448. https://doi.org/10.1016/S0148-9062(99)00010-8.
  6. Dragon, A. and Mroz, Z.A. (1978), "Continuum model for plasticbrittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137. https://doi.org/10.1016/0020-7225(79)90058-2.
  7. Gautam, P.K., Verma, A.K., Jha, M.K., Sarkar, K., Singh, T.N. and Bajpai, R.K. (2016), "Study of strain rate and thermal damage of Dholpur sandstone at elevated temperature", Rock Mech. Rock Eng., 49(9), 1-11. https://doi.org/10.1007/s00603-016-0965-5.
  8. Geraud, Y. (1994) "Variations of connected porosity and inferred permeability in a thermally cracked granite", Geophys. Res. Lett., 21(11), 979-982. https://doi.org/10.1029/94GL00642.
  9. Glover, P.W.J., Baud, P., Darot, M., Meredith, P.G., Boon, S.A., LeRevelec, M., Zoussi, S. and Reuschle, T. (1995), "${\alpha}/{\beta}$ phase transition in quartz monitored using acoustic emissions", Geophys. J. Int., 120(3), 775-782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x.
  10. Hajpal, M. (2002), "Changes in sandstones of historical Monuments Exposed to fire or high temperature", Fire Technol., 38(4), 373-382. https://doi.org/10.1023/A:102017450.
  11. Hajpal, M. and Torok, A. (1989), "Petrophysical and mineralogical studies of burnt sandstones", Proceedings of the 2nd International PhD Symposium in Civil Engineering, Budapest, Hungary.
  12. Hajpal, M. and Torok, A. (2004), "Mineralogical and colour changes of quartz sandstones by heat", Environ. Geol., 46(3-4), 311-322. https://doi.org/10.1007/s00254-004-1034-z.
  13. Heap, M.J., Baud, P. and Meredith, P.G. (2009), "Influence of temperature on brittle creep in sandstones", Geophys. Res. Lett., 36(19), L19305. https://doi.org/10.1029/2009GL039373.
  14. Heuze, F.E. (1983), "High-temperature mechanical, physical and thermal properties of granitic rocks-a review", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(1), 3-10. https://doi.org/10.1016/0148-9062(83)91609-1.
  15. Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007.
  16. Hudson, J.A., Stephansson, O. and Andersson, J. (2005), "Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories", Int. J. Rock Mech. Min. Sci., 42(5-6), 850-870. https://doi.org/10.1016/j.ijrmms.2005.03.018.
  17. ISRM (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.
  18. Kong, B., Wang, E.Y., Li, Z.H., Wong, X.R., Liu, X.F., Li, N. and Yang, Y.L. (2016), "Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment", Eng. Geol., 209, 82-92. https://doi.org/10.1016/j.enggeo.2016.05.009.
  19. Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Shao, S., Chen, B.K., Lashin, A.A.I, Arifi, N. and Rathnaweera, T.D. (2017), "Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction", Geothermics, 65, 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002.
  20. Lan, J.L. (2009), "A study of the mechanical properties of sandstone after cyclic thermal action", M.Sc. Dissertation, National Cheng Kung University, Taiwan.
  21. Liu, X., Yuan, S., Sieffert, Y., Fityus, S. and Buzzi, O. (2016), "Changes in mineralogy, microstructure, compressive strength and intrinsic permeability of two sedimentary rocks subjected to high-temperature heating", Rock Mech. Rock Eng., 49(8), 2985-2998. https://doi.org/10.1007/s00603-016-0950-z.
  22. Lu, C., Sun, Q., Zhang, W.Q., Geng, J.S., Qi, Y.M. and Lu, L.L. (2017), "The effect of high temperature on tensile strength of sandstone", Appl. Thermal Eng., 111, 573-579. https://doi.org/10.1016/j.applthermaleng.2016.09.151.
  23. Luo, J. and Wang, L. (2011), "High-temperature mechanical properties of mudstone in the process of underground coal gasification", Rock Mech. Rock Eng., 44(6), 749. https://doi.org/10.1007/s00603-011-0168-z.
  24. Lyons, K.D., Honeygan, S. and Moroz, T. (2007), "NETL extreme drilling laboratory studies high pressure high temperature drilling phenomena", J. Energy Resour. Technol., 130(4), 791-796. https://doi.org/10.1115/1.3000139.
  25. Minchener, A.J. (2005), "Coal gasification for advanced power generation", Fuel, 84(17), 2222-2235. https://doi.org/10.1016/j.fuel.2005.08.035.
  26. Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35(3), 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7.
  27. Moradi, S.S.T., Nikolaev, N.I., Chudinova, I.V. and Martel A.S. (2018), "Geomechanical study of well stability in high-pressure, high-temperature conditions", Geomech. Eng., 16(3), 331-339. http://dx.doi.org/10.12989/gae.2018.16.3.331.
  28. Otto, C. and Kempka, T. (2015), "Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes", Energies, 8(6), 5800-5827. https://doi.org/10.3390/en8065800.
  29. Ranjith, P.G., Daniel, R.V., Chen, B.J. and Perera, M.S.A. (2012), "Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure", Eng. Geol., 151, 120-127. https://doi.org/10.1016/j.enggeo.2012.09.007.
  30. Scott, T.E. and Nielsen, K.C. (1991), "The effects of porosity on the brittle-ductile transition in sandstones", J. Geophys. Res., 96 (B1), 405-414. https://doi.org/10.1029/90JB02069.
  31. Shafiei, A. and Dusseault, M.B. (2013), "Geomechanics of thermal viscous oil production in sandstones", J. Petrol. Sci. Eng., 103(3), 121-139. https://doi.org/10.1016/j.petrol.2013.02.001.
  32. Sirdesai, N.N., Singh, T.N., Ranjith, P.G. and Singh, R. (2017), "Effect of varied durations of thermal treatment on the tensile strength of red sandstone", Rock Mech. Rock Eng., 50(1), 1-9. https://doi.org/10.1007/s00603-016-1047-4.
  33. Somerton, W.H. (1992), Thermal Properties and Temperaturerelated Behavior of Rock/Fluid Systems, Elsevier, Amsterdam, The Netherlands, 22-29.
  34. Sun, H., Sun, Q., Deng, W., Zhang, W. and Chao, L. (2017), "Temperature effect on microstructure and p-wave propagation in Linyi sandstone", Appl. Thermal Eng., 115, 913-922. https://doi.org/10.1016/j.applthermaleng.2017.01.026.
  35. Sun, Q., Lu, C., Cao, L.W., Li, W.C., Geng, J.S. and Zhang, W.Q. (2016), "Thermal properties of sandstone after treatment at high temperature", Int. J. Rock Mech. Min. Sci., 85, 60-66. https://doi.org/10.1016/j.ijrmms.2016.03.006.
  36. Tang, F.R., Wang, L.G., Lu, Y.L. and Yang, X.Q. (2015), "Thermophysical properties of coal measure strata under high temperature", Environ. Earth Sci., 73(10), 6009-6018. https://doi.org/10.1007/s12665-015-4364-0.
  37. The National Standards Compilation Group of People Republic's China. (2009), Methods for Determining the Physical and Mechanical Properties of Coal and Rock-Part 4: Methods for Calculating the Porosity of Coal and Rock (GB/T23561.4), China Planning Press, Beijing, China (in Chinese).
  38. Tian, H., Kempka, T., Xu, N.X. and Ziegle, M. (2012), "Physical properties of sandstones after high temperature treatment", Rock Mech. Rock Eng., 45(6), 1113-1117. https://doi.org/10.1007/s00603-012-0228-z.
  39. Tiskatine, R., Eddemani, A., Gourdo, L., Abnay, B., Ihlal, A., Aharoune, A. and Bouirden, L. (2016), "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage", Appl. Energy, 171, 243-255. https://doi.org/10.1016/j.apenergy.2016.03.061.
  40. Uribe-Patino, J.A., Alzate-Espinosa, G.A. and Arbelaez-Londono, A. (2017), "Geomechanical aspects of reservoir thermal alteration: A literature review", J. Petrol. Sci. Eng., 152, 250-266. https://doi.org/10.1016/j.petrol.2017.03.012.
  41. Wu, Q.H., Weng, L., Zhao, Y.L., Guo B.H. and Tao L. (2019), "On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates", Eng. Geol., 253, 94-110. https://doi.org/10.1016/j.enggeo.2019.03.014.
  42. Wu, Z., Qin, B.D., Chen, L.J. and Luo, Y.Y. (2005), "Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature", Chin. J. Rock Mech. Eng., 24(11), 1863-1867 (in Chinese). https://doi.org/10.3321/j.issn:1000-6915.2005.11.008
  43. Xu, P. and Yang, S.Q. (2016), "Permeability evolution of sandstone under short-term and long-term triaxial compression", Int. J. Rock Mech. Min. Sci., 85, 152-164. https://doi.org/10.1016/j.ijrmms.2016.03.016.
  44. Yang, S.Q., Hu, B., Ranjith, P. and Xu P. (2018a), "Multi-step loading creep behavior of red sandstone after thermal treatments and a creep damage model", Energies, 11(1), 212. https://doi.org/10.3390/en11010212.
  45. Yang, S.Q. and Hu, B. (2018b), "Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments", Rock Mech. Rock Eng., 51(10), 2981-3004. https://doi.org/10.1007/s00603-018-1528-8.
  46. Yang, S.Q., Jing, H.W. and Cheng, L. (2014), "Influences of pore pressure on short-term and creep mechanical behavior of red sandstone", Eng. Geol., 179, 10-23. https://doi.org/10.1016/j.enggeo.2014.06.016.
  47. Yang, S.Q., Xu, P., Li, Y.B. and Huang, Y.H. (2017), "Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments", Geothermics, 69, 93-109. https://doi.org/10.1016/j.geothermics.2017.04.009.
  48. Ye, G.L., Nishimura, T. and Zhang, F. (2015), "Experimental study on shear and creep behaviour of green tuff at high temperatures", Int. J. Rock Mech. Min. Sci., 79, 19-28. https://doi.org/10.1016/j.ijrmms.2015.08.005.
  49. Zhang, P., Mishra, B. and Heasley, K.A. (2015), "Experimental investigation on the influence of high pressure and high temperature on the mechanical properties of deep reservoir rocks", Rock Mech. Rock Eng., 48(6), 2197-2211. https://doi.org/10.1007/s00603-015-0718-x.
  50. Zhang, W., Sun, Q., Hao, S., Geng, J. and Lv, C. (2016), "Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment", Appl. Thermal Eng., 98, 1297-1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010.

Cited by

  1. Analytical-Based Assessment of Effect of Highly Deformable Elements on Tunnel Lining Within Viscoelastic Rocks vol.12, pp.3, 2019, https://doi.org/10.1142/s1758825120500301