Acknowledgement
Supported by : National Natural Science Foundation of China, China Scholarship Council
References
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clay", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
- Butterfield, R. (1979), "A natural compression law for soils (an advance on e-log p')", Geotechnique, 29(4), 469-480. https://doi.org/10.1680/geot.1979.29.4.469
- Casagrande, A. (1936). "The determination of the preconsolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, U.S.A., June.
- Delage, P. (2006), "Some microstructure effects on the behaviour of compacted swelling clays used for engineered barriers", Chin. J. Rock Mech. Eng., 25(4), 721-732. https://doi.org/10.3321/j.issn:1000-6915.2006.04.007
- Deng, Y.F., Yue, X.B., Liu, S.Y., Chen, Y.G. and Zhang, D.W. (2015), "Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution", Eng. Geol., 193, 146-152. https://doi.org/10.1016/j.enggeo.2015.04.018.
- Dolinar, B. (2009), "Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations", Appl. Clay Sci., 45(1-2), 90-94. http://dx.doi.org/10.1016/j.clay.2009.04.001.
- Gao, Z.Y. and Hu, Q.H. (2013), "Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry", J. Geophys. Eng., 10(2), 025014. https://doi.org/10.1088/1742-2132/10/2/025014
- Hall, M.K. and Fox, P.J. (2018), "Large strain consolidation model for land subsidence", Int. J. Geomech., 18(11), 06018028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001267
- Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. https://doi.org/10.1680/geot.10.P.046
- Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. and Katkan, W. (2007), "Assessment of engineering properties of Bangkok clay", Can. Geotech. J., 44(2), 173-187. https://doi.org/10.1139/t06-101.
- Lacasse, S., Berre, T. and Lefebvre, G. (1985), "Block sampling of sensitive clays", Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, U.S.A., August.
- Lapierre, C., Leroueil, S. and Locat, J. (1990), "Mercury intrusion and permeability of Louiseville clay", Can. Geotech. J., 27(6), 761-773. https://doi.org/10.1139/t90-090.
- Le, T.T., Cui, Y.J., Munoz, J.J., Delage, P., Tang, A.M. and Li, X.L. (2011), "Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer", Front. Architect. Civ. Eng. China, 5(2), 160-170. https://doi.org/10.1007/s11709-011-0106-x.
- Lei, H.Y., Feng, S.X. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125.
- Leroueil, S., Diene, M., Tavenas, F., Kabbaj, M. and Rochelle, P. (1988), "Direct determination of permeability of clay under embankments", J. Geotech. Eng., 114(6), 645-657. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:6(645).
- Mesri, G. and Rokhsar, A. (1974), "Consolidaiton of normally consolidated clay", J. Soil Mech. Found. Eng., 100(8), 889-903.
- Mitchell, J.K. (1993), Fundamentals of Soil Behavior, Wiley, New York, U.S.A.
- Nagaraj, T.S., Pandian, N.S. and Raju, P.S.R.N. (1991), "An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes." Indian Geotech. J., 21(3), 271-282.
- Oren, A.H., Aksoy, Y.Y., Onal, O. and Demirk, H. (2018), "Correlating the hydraulic conductivities of GCLs with some properties of bentonites", Geomech. Eng., 15(5), 1091-1100. https://doi.org/10.12989/gae.2018.15.5.1091
- Sridharan, A. and Nagaraj, H.B. (2005), "Hydraulic conductivity of remolded fine-grained soils versus index properties", Geotech. Geol. Eng., 23(1), 43-60. https://doi.org/10.1007/s10706-003-5396-x
- Sun, D.A., Chen, B. and Wei, C.F. (2014), "Effect of fabric on mechanical behavior of marine clay", Mar. Georesour. Geotech., 32(1), 1-17. https://doi.org/10.1080/1064119X.2012.710714.
- Tavenas, F., Jean, P., Leblond, P. and Leroueil, S. (1983), "The permeability of natural soft clays-Part II: Permeability characteristics", Can. Geotech. J., 20(4), 645-660. https://doi.org/10.1139/t83-073.
- Yuan, S.Y., Liu, X.F. and Buzzi, O. (2019), "Effects of soil structure on the permeability of saturated Maryland clay", Geotechnique, 69(1), 72-78. https://doi.org/10.1680/jgeot.17.P.120.
- Zeng, L.L. and Cai, C. (2012), "Effect of soil structure on the hydraulic conductivity behaviour of clays", J. Fujian Univ. Tech., 10(3), 230-234 (in Chinese). https://doi.org/10.3969/j.issn.1672-4348.2012.03.006
- Zeng, L.L., Hong, Z.S., Cai, Y.Q. and Han, J. (2011), "Change of hydraulic conductivity during compression of undisturbed and remolded clays", Appl. Clay Sci., 51(1-2), 86-93. https://doi.org/10.1016/j.clay.2010.11.005.
- Zhang, X.W., Kong, L.W., Guo, A.G. and Tuo, Y.F. (2014), "Experiment study of pore distribution of strong structural clay under different consolidation pressures", Rock Soil Mech., 35(10), 2794-2800 (in Chinese).
- Zhao, Y., Xue, Q., Huang, F.X., Hu, X.T. and Li, J.S. (2016), "Experimental study on the microstructure and mechanical behaviors of leachate-polluted compacted clay", Environ. Earth Sci., 75(12), 1006. https://doi.org/10.1007/s12665-016-5816-x.
- Zhu, H., Zhang, L.M., Chen, C. and Chan, K. (2018), "Threedimensional modeling of water flow due to leakage from pressurized buried pipe", Geomech. Eng., 16(4), 423-433. https://doi.org/10.12989/gae.2018.16.4.423.
Cited by
- Effects of dry density and water content on compressibility and shear strength of loess vol.24, pp.5, 2019, https://doi.org/10.12989/gae.2021.24.5.419