DOI QR코드

DOI QR Code

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University) ;
  • Chen, Jie (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University) ;
  • Jiang, Deyi (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University) ;
  • Wu, Jianxun (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University) ;
  • Shu, Cai (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University) ;
  • Liu, Wei (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
  • Received : 2018.01.30
  • Accepted : 2019.04.16
  • Published : 2019.05.20

Abstract

Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

Keywords

Acknowledgement

Supported by : National Natural Science Fund, China Postdoctoral Science Foundation, Central Universities

References

  1. Alehossein, H. and Poulsen, B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(1), 30-41. https://doi.org/10.1016/j.ijrmms.2009.07.004.
  2. Bai, H., Li, W., Ding, Q., Wang, Q. and Yang, D. (2015a), "Interaction mechanism of the interface between a deep buried sand and a paleo-weathered rock mass using a high normal stress direct shear apparatus", Int. J. Min. Sci. Technol., 25(4), 623-628. https://doi.org/10.1016/j.ijmst.2015.05.016.
  3. Bai, Q., Tu, S., Li, Z. and Tu, H. (2015b), "Theoretical analysis on the deformation characteristics of coal wall in a longwall top coal caving face", Int. J. Min. Sci. Technol., 25(2), 199-204. https://doi.org/10.1016/j.ijmst.2015.02.006.
  4. Cai, M. (2013), "Principles of rock support in burst-prone ground", Tunn. Undergr. Sp. Technol., 36, 46-56. https://doi.org/10.1016/j.tust.2013.02.003.
  5. Chen, X., Li, W. and Yan, X. (2012), "Analysis on rock burst danger when fully-mechanized caving coal face passed fault with deep mining", Safety Sci., 50(4), 645-648. https://doi.org/10.1016/j.ssci.2011.08.063.
  6. Dou, L.M., He, X.Q., Hu, H.E., He, J. and Fan, J. (2014), "Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine", Trans. Nonferr. Metals Soc. China, 24(4), 1255-1261. https://doi.org/10.1016/S1003-6326(14)63187-3.
  7. Driad-Lebeau, L., Lahaie, F., Al Heib, M., Josien, J.P., Bigarre, P. and Noirel, J.F. (2005), "Seismic and geotechnical investigations following a rockburst in a complex French mining district", Int. J. Coal Geol., 64(1-2), 66-78. https://doi.org/10.1016/j.coal.2005.03.017.
  8. Fan, J., Chen, J., Jiang D., Chemenda A., Chen J. and Ambre J. (2017), "Discontinuous cyclic loading test with acoustic emssion monitoring", Int. J. Fatigue, 94(1), 140-144. https://doi.org/10.1016/j.ijfatigue.2016.09.016.
  9. Fan, J., Chen, J., Jiang D., Ren S. and Wu J. (2016), "Fatigue properties of rock salt subjected to interval cyclic pressure", Int. J. Fatigue, 90(9), 109-115. https://doi.org/10.1016/j.ijfatigue.2016.04.021.
  10. Fan, J., Dou, L., He, H., Du, T., Zhang, S., Gui, B. and Sun, X. (2012), "Directional hydraulic fracturing to control hard-roof rockburst in coal mine", Int. J. Min. Sci. Technol., 22(2), 177-181. https://doi.org/10.1016/j.ijmst.2011.08.007.
  11. Feng, X., Wang, E., Shen, R., Wei, M., Yu, C. and Cao, X. (2011), "The dynamic impact of rock burst induced by the fracture of the thick and hard key stratum", Procedia Eng., 26, 457-465. https://doi.org/10.1016/j.proeng.2011.11.2192.
  12. Frid, V. (1997), "Rockburst hazard forecast by electromagnetic radiation excited by rock fracture", Rock Mech. Rock Eng., 30(4), 229-236. https://doi.org/10.1007/BF01045719.
  13. Fujii, Y., Ishijima, Y. and Deguchi, G. (1997), "Prediction of coal face rockbursts and microseismicity in deep longwall coal mining", Int. J. Rock Mech. Min. Sci., 34(1), 85-96. https://doi.org/10.1016/S1365-1609(97)80035-4.
  14. He, H., Dou, L., Fan, J., Du, T. and Sun, X. (2012a), "Deep-hole directional fracturing of thick hard roof for rockburst prevention", Tunn. Undergr. Sp. Technol., 32, 34-43. https://doi.org/10.1016/j.tust.2012.05.002.
  15. He, J., Dou, L.M., Cao, A.Y., Gong, S.Y. and Lu, J.W. (2012b), "Rock burst induced by roof breakage and its prevention", J. Central South Univ., 19(4), 1086-1091. https://doi.org/10.1007/s11771-012-1113-3.
  16. He, M., Xia, H., Jia, X., Gong, W., Zhao, F. and Liang, K. (2012c), "Studies on classification, criteria and control of rockbursts", J. Rock Mech. Geotech. Eng., 4(2), 97-114. https://doi.org/10.3724/SP.J.1235.2012.00097.
  17. He, M.C., Miao, J.L. and Feng, J.L. (2010), "Rock burst process of limestone and its acoustic emission characteristics under truetriaxial unloading conditions", Int. J. Rock Mech. Min. Sci., 47(2), 286-298. https://doi.org/10.1016/j.ijrmms.2009.09.003.
  18. Konicek, P., Soucek, K., Stas, L. and Singh, R. (2013), "Long-hole destress blasting for rockburst control during deep underground coal mining", Int. J. Rock Mech. Min. Sci., 61, 141-153. https://doi.org/10.1016/j.ijrmms.2013.02.001.
  19. Lesniak, A. and Isakow, Z. (2009), "Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland", Int. J. Rock Mech. Min. Sci., 46(5), 918-928. https://doi.org/10.1016/j.ijrmms.2008.12.003.
  20. Li, X., Wang, E., Li, Z., Bie, X., Chen, L., Feng, J. and Li, N. (2016), "Blasting wave pattern recognition based on Hilbert-Huang transform", Geomech. Eng., 11(5), 607-624. https://doi.org/10.12989/gae.2016.11.5.607.
  21. Li, Z., Dou, L., Cai, W., Wang, G., He, J., Gong, S. and Ding, Y. (2014), "Investigation and analysis of the rock burst mechanism induced within fault-pillars", Int. J. Rock Mech. Min. Sci., 70, 192-200. https://doi.org/10.1016/j.ijrmms.2014.03.014.
  22. Lu, A.H., Mao, X.B. and Liu, H.S. (2008), "Physical simulation of rock burst induced by stress waves", J. China Univ. Min. Technol., 18(3), 401-405. https://doi.org/10.1016/S1006-1266(08)60084-X.
  23. Lu, C.P., Dou, L.M., Liu, B., Xie, Y.S. and Liu, H.S. (2012), "Microseismic low-frequency precursor effect of bursting failure of coal and rock", J. Appl. Geophys., 79, 55-63. https://doi.org/10.1016/j.jappgeo.2011.12.013.
  24. Lu, C.P., Liu, G.J., Liu, Y., Zhang, N., Xue, J.H. and Zhang, L. (2015), "Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration", Int. J. Rock Mech. Min. Sci., 76, 18-32. https://doi.org/10.1016/j.ijrmms.2015.02.005.
  25. Luo, J. (2013), "Research on the mechanism of rock burst in coal roadway under extremely thick igneous rocks and control techniques", China University of Mining and Technology, Xuzhou, China.
  26. Ning, J., Wang, J., Liu, X., Qian, K. and Sun, B. (2014), "Softstrong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst", Int. J. Min. Sci. Technol., 24(6), 805-810. https://doi.org/10.1016/j.ijmst.2014.10.012.
  27. Ortlepp, W.D. and Stacey, T.R. (1994), "Rockburst mechanisms in tunnels and shafts", Tunn. Undergr. Sp. Technol., 9(1), 59-65. https://doi.org/10.1016/0886-7798(94)90010-8.
  28. Pan, J., Meng, Z., Hou, Q., Ju, Y. and Li, G. (2009), "Influence of the roof lithological characteristics on rock burst: A case study in Tangshan colliery, China", Geomech. Eng., 1(2), 143-154. https://doi.org/10.12989/gae.2009.1.2.143.
  29. Senfaute, G., Chambon, C., Bigarre, P., Guise, Y. and Josien, P.J. (1997), "Spatial distribution of mining tremors and the relationship to rockburst hazard", Pure Appl. Geophys., 150(3), 451-459. https://doi.org/10.1007/s000240050087.
  30. Song, D., Wang, E., Li, Z., Qiu, L. and Xu, Z. (2017), "An effective method for monitoring and warning of rock burst hazard", Geomech. Eng., 12(1), 53-69. https://doi.org/10.12989/gae.2017.12.1.53.
  31. Taupin, V., Berbenni, S., Fressengeas, C. and Bouaziz, O. (2010), "On particle size effects: An internal length mean field approach using field dislocation mechanics", Acta Materialia, 58(16), 5532-5544. https://doi.org/10.1016/j.actamat.2010.06.034.
  32. Tsirel, S.V. and Krotov, N.V. (2001), "Probability interpretation of indirect risk criteria and estimate of rock-burst hazard in mining anthracite seams", J. Min. Sci., 37(3), 240-260. https://doi.org/10.1023/A:1013194110443.
  33. Wang, L., Lu, Z. and Gao, Q. (2012), "A numerical study of rock burst development and strain energy release", Int. J. Min. Sci. Technol., 22(5), 675-680. https://doi.org/10.1016/j.ijmst.2012.08.014.
  34. Xu, X., Dou, L., Lu, C. and Zhang, Y. (2010), "Frequency spectrum analysis on micro-seismic signal of rock bursts induced by dynamic disturbance", Min. Sci. Technol., 20(5), 682-685. https://doi.org/10.1016/S1674-5264(09)60262-3.
  35. Yan, Y. (2011), "Research on the mechanism and technology of rock burst control in Datong coal mining area", Taiyuan University of Technology, Taiyuan, China.
  36. Yong, L. (2015), "Study of mechanism and control of coal bumps in JIXI mine area", China University of Mining and Technology, Xuzhou, China.
  37. Zhang, R.L., Wang, Z.J. and Chen, J.W. (2012), "Experimental research on the variational characteristics of vertical stress of soft coal seam in front of mining face", Safety Sci., 50(4), 723-727. https://doi.org/10.1016/j.ssci.2011.08.045.
  38. Zhang, X. and Aifantis, K.E. (2015), "Examining the evolution of the internal length as a function of plastic strain", Mater. Sci. Eng. A, 631, 27-32. https://doi.org/10.1016/j.msea.2015.01.011.
  39. Zhao, Y. and Jiang, Y. (2010), "Acoustic emission and thermal infrared precursors associated with bump-prone coal failure", Int. J. Coal Geol., 83(1), 11-20. https://doi.org/10.1016/j.coal.2010.04.001.
  40. Zhou, X. and Qian, Q. (2013), "The non-Euclidean model of failure of the deep rock masses under the deformation incompatibilty condition", J. Min. Sci., 49(3), 368-375. https://doi.org/10.1134/S1062739149030039.
  41. Zhou, X.P., Qian, Q.H. and Yang, H.Q. (2011), "Rock burst of deep circular tunnels surrounded by weakened rock mass with cracks", Theor. Appl. Fract. Mech., 56(2), 79-88. https://doi.org/10.1016/j.tafmec.2011.10.003.

Cited by

  1. Mode I Fracture Toughness Test and Fractal Character of Fracture Trajectory of Red Sandstone under Real-Time High Temperature vol.2019, 2019, https://doi.org/10.1155/2019/5083947
  2. Effect of Underground Coal Mining on Slope Morphology and Soil Erosion vol.2019, 2019, https://doi.org/10.1155/2019/5285126
  3. Prevention Technology for Strong Mine Pressure Disaster in the Hard-Roof Large-Mining-Height Working Face vol.2020, 2020, https://doi.org/10.1155/2020/8846624
  4. Mechanical Model of the Initial Leg Pressure Increment of the Shield and Its Application to Monitor Roof Load in Longwall Panels vol.2020, 2019, https://doi.org/10.1155/2020/8885905
  5. Oil-water separation device based on super-hydrophobic material with multi-scale surface structure vol.8, pp.2, 2019, https://doi.org/10.1088/2051-672x/ab8751
  6. Evaluation of Potential for Salt Cavern Gas Storage and Integration of Brine Extraction: Cavern Utilization, Yangtze River Delta Region vol.29, pp.5, 2019, https://doi.org/10.1007/s11053-020-09640-4
  7. Determination of the sensitivity index and its critical value for outburst risk prediction: A case study in Fuxiang mine, China vol.38, pp.9, 2020, https://doi.org/10.1177/0263617420963735
  8. Experimental Study on the Cement-Based Materials Used in Coal Mine Gas Extraction for Hole Sealing vol.6, pp.32, 2019, https://doi.org/10.1021/acsomega.1c02911