DOI QR코드

DOI QR Code

Atomic structure and crystallography of joints in SnO2 nanowire networks

  • Hrkac, Viktor (Synthesis and Real Structure, Institute for Materials Science, Kiel University) ;
  • Wolff, Niklas (Synthesis and Real Structure, Institute for Materials Science, Kiel University) ;
  • Duppel, Viola (Nanochemistry, Max Planck Institute for Solid State Research) ;
  • Paulowicz, Ingo (Phi-Stone AG) ;
  • Adelung, Rainer (Functional Nanomaterials, Institute for Materials Science, University of Kiel) ;
  • Mishra, Yogendra Kumar (Functional Nanomaterials, Institute for Materials Science, University of Kiel) ;
  • Kienle, Lorenz (Synthesis and Real Structure, Institute for Materials Science, Kiel University)
  • Received : 2019.01.07
  • Accepted : 2019.01.30
  • Published : 2019.04.29

Abstract

Joints of three-dimensional (3D) rutile-type (r) tin dioxide ($SnO_2$) nanowire networks, produced by the flame transport synthesis (FTS), are formed by coherent twin boundaries at $(101)^r$ serving for the interpenetration of the nanowires. Transmission electron microscopy (TEM) methods, i.e. high resolution and (precession) electron diffraction (PED), were utilized to collect information of the atomic interface structure along the edge-on zone axes $[010]^r$, $[111]^r$ and superposition directions $[001]^r$, $[101]^r$. A model of the twin boundary is generated by a supercell approach, serving as base for simulations of all given real and reciprocal space data as for the elaboration of three-dimensional, i.e. relrod and higher order Laue zones (HOLZ), contributions to the intensity distribution of PED patterns. Confirmed by the comparison of simulated and experimental findings, details of the structural distortion at the twin boundary can be demonstrated.

Keywords

References

  1. M.E. Davis, Ordered porous materials for emerging applications. Nature 417 , 813-821 (2002) https://doi.org/10.1038/nature00785
  2. H.J. Deiseroth, C. Reiner, K. Xhaxhiu, M. Schlosser, L. Kienle, X-Ray and Transmission Electron Microscopy Investigations of the New Solids In5S5Cl, In5Se5Cl, In5S5Br, and In5Se5Br. Z. Anorg Allg. Chem. 630, 2319-2328 (2004) https://doi.org/10.1002/zaac.200400303
  3. K.A. Dick, K. Deppert, M.W. Larsson, T. Martensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nat. Mater. 3, 380-384 (2004) https://doi.org/10.1038/nmat1133
  4. T. Hahn (ed.), International tables for crystallography, vol A (Kluwer Academic Publishers, Dordrecht/Boston/ London, 2002)
  5. V. Hrkac, L. Kienle, S. Kaps, A. Lotnyk, Y.K. Mishra, U. Schurmann, V. Duppel, B.V. Lotsch, R. Adelung, Superposition twinning supported by texture in ZnO nanospikes. J. Appl. Crystallogr. 46, 396-403 (2013) https://doi.org/10.1107/S0021889812051333
  6. V. Hrkac, A. Kobler, S. Marauska, A. Petraru, U. Schurmann, V.S.K. Chakravadhanula, V. Duppel, H. Kohlstedt, B. Wagner, V.B. Lotsch, C. Kubel, L. Kienle, Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride. J. Appl. Phys. 117, 014301 (2015) https://doi.org/10.1063/1.4905109
  7. L. Kienle, A. Simon, Polysynthetic Twinning in RbIn3S5. J. Solid State Chem. 167, 214--225 (2002) https://doi.org/10.1006/jssc.2002.9645
  8. R. Kilaas, Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 190, 45-51 (1998) https://doi.org/10.1046/j.1365-2818.1998.3070861.x
  9. J.J. Klawitter, S.F. Hulbert, Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J. Biomed. Mater. Res. Symposium. 5, 161-229 (1971) https://doi.org/10.1002/jbm.820050613
  10. S. Mathur, S. Barth, H. Shen, J.C. Pyun, U. Werner, Size-dependent photoconductance in SnO2 nanowires. Small 1, 713-717 (2005) https://doi.org/10.1002/smll.200400168
  11. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of Macroscopically Flexible and Highly Porous 3D Semiconductor Networks from Interpenetrating Nanostructures by a Simple Flame Transport Approach. Part. Part. Syst. Charact. 30, 775-783 (2013) https://doi.org/10.1002/ppsc.201300197
  12. J. Molarius, J. Kaitila, T. Pensala, M. Ylilammi, Piezoelecric ZnO films by r.f sputtering. J. Mater. Sci. Mater. Electron. 14, 431-435 (2003) https://doi.org/10.1023/A:1023929524641
  13. I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, V. Duppel, I. Tiginyanu, L. Kienle, R. Adelung, Three-Dimensional SnO2 Nanowire Networks for Multifunctional Applications: From High-Temperature Stretchable Ceramics to Ultraresponsive Sensors. Adv. Electron. Mater., 1, 1500081, 1-8 (2015) https://doi.org/10.1002/aelm.201500081
  14. R.W. Rice, Porosity of ceramics: properties and applications (CRC Press, Boca Raton, 1998)
  15. U. Schurmann, V. Duppel, S. Buller, W. Bensch, L. Kienle, Precession Electron Diffraction - a versatile tool for the characterization of Phase Change Materials. Cryst. Res. Technol. 46, 561-568 (2011) https://doi.org/10.1002/crat.201000516
  16. J.E. Sousa, P.W. Serruys, M.A. Costa, New Frontiers in Cardiology, Drug-Eluting Stents: Part I. Circulation 107, 2274-2279 (2003) https://doi.org/10.1161/01.CIR.0000069330.41022.90
  17. P.A. Stadelmann, EMS - a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131-145 (1987) https://doi.org/10.1016/0304-3991(87)90080-5
  18. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 15, 353-389 (2003) https://doi.org/10.1002/adma.200390087
  19. R.Q. Zhang, Y. Lifshitz, S.T. Lee, Oxide-Assisted Growth of Semiconducting Nanowires. Adv. Mater. 15, 635-640 (2003) https://doi.org/10.1002/adma.200301641
  20. J.G. Zheng, X. Pan, M. Schweizer, F. Zhou, W. Weimer, W. Gopel, M. Ruhle, Growth twins in nanocrystalline SnO2 thin films by high-resolution transmission electron microscopy. J. Appl. Phys. 79, 7688 (1996) https://doi.org/10.1063/1.362434

Cited by

  1. In-situ observation of graphene using an optical microscope vol.6, 2019, https://doi.org/10.1016/j.apsadv.2021.100138
  2. Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structures vol.13, pp.48, 2019, https://doi.org/10.1021/acsami.1c18236