DOI QR코드

DOI QR Code

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model

  • Nie, Junfeng (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University) ;
  • Liu, Yunpeng (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University) ;
  • Xie, Qihao (Data Science and Information Technology Research Center, Tsinghua-Berkeley Shenzhen Institute) ;
  • Liu, Zhanli (Applied Mechanics Lab., School of Aerospace Engineering, Tsinghua University)
  • Received : 2018.08.03
  • Accepted : 2018.10.21
  • Published : 2019.04.25

Abstract

In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.

Keywords

References

  1. E. Meslin, M. Lambrecht, M. Hernandez-Mayoral, et al., Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses, J. Nucl. Mater. 406 (1) (2009) 73-83. https://doi.org/10.1016/j.jnucmat.2009.12.021
  2. T. Takeuchi, A. Kuramoto, J. Kameda, et al., Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels, J. Nucl. Mater. 402 (2/3) (2010) 93-101. https://doi.org/10.1016/j.jnucmat.2010.04.008
  3. S. A Maloy, M. R James, G. Willcutt, et al., The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment, J. Nucl. Mater. 296 (1-3) (2001) 119-128. https://doi.org/10.1016/S0022-3115(01)00514-1
  4. M.K. Miller, M.G. Burke, An atom probe field ion microscopy study of neutronirradiated pressure vessel steels, J. Nucl. Mater. 195 (1992) 68-82. https://doi.org/10.1016/0022-3115(92)90364-Q
  5. D. Brimbal, B. Decamps, A. Barbu, et al., Dual-beam irradiation of ${\alpha}$-iron: heterogeneous bubble formation on dislocation loops, J. Nucl. Mater. 418 (1) (2011) 313-315. https://doi.org/10.1016/j.jnucmat.2011.06.048
  6. C. Domain, C.S. Becquart, L. Maplerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater. 335 (1) (2004) 121-145. https://doi.org/10.1016/j.jnucmat.2004.07.037
  7. G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.
  8. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solid. 20 (6) (1972) 401-403. https://doi.org/10.1016/0022-5096(72)90017-8
  9. R.J. Asaro, Micro mechanics of crystals and polycrystals, Adv. Appl. Mech. 23 (8) (1983) 11-15.
  10. D. Peirce, C.F. Shih, A. Needleman, A tangent modulus method for rate dependent solids, Comput. Struct. 18 (5) (1984) 875-887. https://doi.org/10.1016/0045-7949(84)90033-6
  11. F.T. Meissornnier, E.P. Busso, N.P. O'Dowd, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, Int. J. Plast. 17 (2001) 601-640. https://doi.org/10.1016/S0749-6419(00)00064-4
  12. A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater. 54 (8) (2006) 2169-2179. https://doi.org/10.1016/j.actamat.2006.01.005
  13. L. Vincent, M. Libert, B. Marini, et al., Towards a modelling of RPV steel brittle fracture using crystal plasticity computations on polycrystalline aggregates, J. Nucl. Mater. 406 (2010) 91-96. https://doi.org/10.1016/j.jnucmat.2010.07.022
  14. Fabien Onimus, Jean-Luc Bechade, A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys, J. Nucl. Mater. 384 (2009) 163-174. https://doi.org/10.1016/j.jnucmat.2008.11.006
  15. Xiazi Xiao, Dmitry Terentyev, Long Yu, et al., Modelling irradiation-induced softening in BCC iron by crystal plasticity approach, J. Nucl. Mater. 466 (2015) 312-315. https://doi.org/10.1016/j.jnucmat.2015.08.017
  16. E. Schmid, W. Boas, Plasticity of crystals, Aeronaut. J. 54 (479) (1950) 353-719.
  17. E.P. Busso, Cyclic Deformation of Monocrystalline Nickel Aluminide and High Temperature Coatings, Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, 2005.
  18. E. Orowan, Zur Kristallogr, Z. Phys. 89 (3/4) (1934) 327-343.
  19. U. Essmann, H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos. Mag. A 40 (1979) 731. https://doi.org/10.1080/01418617908234871
  20. A. Arsenlis, D.M. Parks, Modeling the evolution of crystallographic dislocation density in crystal plasticity, J. Mech. Phys. Solid. 50 (2002) 1979-2009. https://doi.org/10.1016/S0022-5096(01)00134-X
  21. U.F. Kocks, A statistical theory of flow stress and work-hardening, Philos. Mag. 13 (1966) 541-566. https://doi.org/10.1080/14786436608212647
  22. Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1984) 57-70. https://doi.org/10.1016/0001-6160(84)90202-5
  23. C. Deo, C. Tome, R. Lebensohn, et al., Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors, J. Nucl. Mater. 377 (1) (2008) 136-140. https://doi.org/10.1016/j.jnucmat.2008.02.064
  24. Anirban Patra, L. David, McDowell, Crystal plasticity-based constitutive modelling of irradiated bcc structures, Philos. Mag. A 92 (7) (2011) 1-27.
  25. Hibbitt Karlsson, Sorensen, ABAQUS/Standard User's Manuals., v6.5, 2005.
  26. Yun Lin, Guang-sheng Ning, Chang-yi Zhang, et al., Mechanical property of China A508-3 steel after neutron irradiation, Energy Sci. Technol. 50 (02) (2016) 204-207.
  27. R.A. Johnson, D.J. Oh, Analytic embedded atom method model for BCC metals, J. Mater. Res. 4 (5) (1989) 1195-1201. https://doi.org/10.1557/JMR.1989.1195
  28. D. Brunner, J. Diehl, Strain-rate and temperature dependence of the tensile flow stress of high-purity ${\alpha}$-iron above 250 K (regime I) studied by means of stress-relaxation tests, Phys. Status Solidi Appl. Res. 124 (1) (1991) 155-170. https://doi.org/10.1002/pssa.2211240114
  29. W.A. Spitzig, A.S. Keh, The role of internal and effective stresses in the plastic flow of iron single crystals, Metall. Mater. Trans. B 1 (12) (1970) 3325-3331.
  30. X.M. Bai, H. Ke, Y. Zhang, et al., Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation, J. Nucl. Mater. 495 (2017) 442-454. https://doi.org/10.1016/j.jnucmat.2017.08.042
  31. M.F. Ashby, Mechanisms of deformation and fracture, Adv. Appl. Mech. 23 (1983) 117-177. https://doi.org/10.1016/S0065-2156(08)70243-6
  32. P. Zhang, M. Karimpour, D. Balint, et al., A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis[J], Comput. Mater. Sci. 64 (2012) 84-89. https://doi.org/10.1016/j.commatsci.2012.02.022
  33. Junfeng Nie, Zhenrui Tang, et al., Crystal plasticity constitutive model for BCC based on the dislocation density[J], J. Tsinghua Univ. 57 (2017) 780-784.
  34. J.W. Hutchinson, Plastic stress-strain relations of F.C.C polycrystalline metals hardening according to Taylor's rule[J], J. Mech. Phys. Solid. 12 (1) (1964) 11-24. https://doi.org/10.1016/0022-5096(64)90003-1
  35. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, 1996.
  36. Feng Lu, Ke-shi Zhang, Guang Zhang, et al., Anisotropic damage model under continuum slip crystal plasticity theory for single crystals, Int. J. Solid Struct. 39 (20) (2002) 5279-5293. https://doi.org/10.1016/S0020-7683(02)00409-2
  37. Zhao-liang Wang, The Research of Inhomogenous Plastic Deformation and Damage of Metal Materials, Master's Thesis, Guangxi University, Nanning, 2016.
  38. Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1) (1984) 57-70. https://doi.org/10.1016/0001-6160(84)90202-5

Cited by

  1. Evaluation of Transition Temperature in Reactor Pressure Vessel Steels 6using the Fracture Energy Transition Curve from a Small Punch Test vol.58, pp.8, 2019, https://doi.org/10.3365/kjmm.2020.58.8.522
  2. Atomic Simulations for Packing Changes of Nano-Sized Cu Clusters Embedded in the Febulk on Heating vol.11, pp.6, 2019, https://doi.org/10.3390/met11060934