DOI QR코드

DOI QR Code

Neutronic study of utilization of discrete thorium-uranium fuel pins in CANDU-6 reactor

  • Deng, Nianbiao (School of Nuclear Science and Technology, University of South China) ;
  • Yu, Tao (School of Nuclear Science and Technology, University of South China) ;
  • Xie, Jinsen (School of Nuclear Science and Technology, University of South China) ;
  • Chen, Zhenping (School of Nuclear Science and Technology, University of South China) ;
  • Xie, Qin (School of Nuclear Science and Technology, University of South China) ;
  • Zhao, Pengcheng (School of Nuclear Science and Technology, University of South China) ;
  • Liu, Zijing (School of Nuclear Science and Technology, University of South China) ;
  • Zeng, Wenjie (School of Nuclear Science and Technology, University of South China)
  • Received : 2018.07.20
  • Accepted : 2018.10.24
  • Published : 2019.04.25

Abstract

Targeting at simulating the application of thorium-uranium (TU) fuel in the CANDU-6 reactor, this paper analyzes the process using the code DRAGON/DONJON where the discrete TU fuel pins are applied in the CANDU-6 reactor under the time-average equilibrium refueling. The results show that the coolant void reactivity of the assembly analyzed in this paper is lower than that of 37-element bundle cell with natural uranium and 37-element bundle cell with mixed TU fuel pins; that the max time-average channel/bundle power of the core meets the limits - less than 6700kW/860 kW; that the fuel conversion ratio is higher than that of the CANDU-6 reactor with natural uranium; and that the exit burnup increases to 13400 MWd/tU. Thus, the simulation in this paper with the fuel in the 37-element bundle cell using discrete TU fuel pins can be considered to be applied in CANDU-6 reactor with adequate modifications of the core structure and operating modes.

Keywords

References

  1. IAEA, Power Reactor Information System, 2017. http://www.iaea.org/pris/.
  2. G. Zhang, T. Yu, J.S. Xie, et al., Validation of thorium fuel benchmark by DRAGON code using WLUP library, Atomic Energy Sci. Technol. 50 (10) (2016) 1828-1833 (in chinese).
  3. International Atomic Energy Agency, Thorium Fuel Cycle: Potential Benefits and Challenges, IAEA-tecdoc-1450, 2005 (Vienna, Austria).
  4. Z.H. Zhang, M.J. Chen, Technical advantage of HWR and the tentative plan for its development, China Nuclear Power 03 (02) (2010) 124-129 (in chinese).
  5. J.Q. Qian, Characteristics and development of CANDU NPP unit, Chinese J. Nucl. Sci. Eng. 23 (03) (2003), 193-202+210 (in chinese).
  6. Y.H. Wang, K. Wang, Research on physics characteristics of the fuel for thorium-based heavy water nuclear energy system, Nucl. Power Eng. 24 (05) (2003) 454-457 (in chinese).
  7. A. Nuttin, P. Guillemin, T. Courau, et al., Study of CANDU thorium-based fuel cycles by deterministic and Monte Carlo methods, in: PHYSOR 2006, Vancouver, Canada, 2006.
  8. T.L. Wang, J.H. Li, Research on U-Th self-sustaining cycle in CANDU, Chinese J. Nucl. Sci. Eng. 30 (02) (2010) 144-149 (in chinese).
  9. B. Holmes, Automated Refueling Simulations of a CANDU for the Exploitation of Thorium Fuels (Ph.D. thesis), Ecole Polytechnique de Montreal, Montreal, Canada, 2013.
  10. E. St-Aubin, CANDU-6 fuel optimization for advanced cycles, Nucl. Eng. Des. 293 (2015) 371-384. https://doi.org/10.1016/j.nucengdes.2015.06.023
  11. M.S. MILGRAM, Once through Thorium Cycles in CANDU Reactors, Atomic Energy of Canada Report, AECL-7516, 1982.
  12. E. St-Aubin, G. Marleau, Optimized CANDU-6 cell and reactivity device supercell models for advanced fuels reactor database generation, Ann. Nucl. Energy 85 (2015) 331-336. https://doi.org/10.1016/j.anucene.2015.05.022
  13. G. Marleau, A. Hebert, R. Roy, A User Guide for DRAGON Version4, Report IGE-294, Ecole Polytechnique de Montreal, Montreal, Canada, 2016.
  14. G. Marleau, New Geometries Processing in DRAGON: the NXT: Module, Report IGE-260 Rev.1, Ecole Polytechnique de Montreal, Montreal, Canada, 2006.
  15. WLUP, Final stage of the WIMS-D library update project. http://www-nds.iaea.org/wimsd, 2014.
  16. S.C. Liu, J.J. Cai, Neutronics study of uranium-thorium mixed fuel assembly in SCWR, Nucl. Sci. Eng. 35 (03) (2015) 6-7 (in chinese).
  17. A. Hebert, D. Sekki, R. Chambon, A User Guide for DONJON Version4, Report IGE-300, Ecole Polytechnique de Montreal, Montreal, Canada, 2016.
  18. R. Chambon, E. Varin, D. Rozon, CANDU fuel management optimization using alternative gradient methods, Ann. Nucl. Energy 34 (2007) 1002-1013. https://doi.org/10.1016/j.anucene.2006.10.009
  19. A. Nuttin, P. Guillemin, A. Bidaud, et al., Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors, Ann. Nucl. Energy 40 (2012) 171-189. https://doi.org/10.1016/j.anucene.2011.08.014
  20. W.C. Wang, J.J. Feng, J. Wang, et al., Development of software system for optimization of CANDU refueling, China Nucl. Ind. (11) (2011) 11-17 (in chinese).
  21. S.F. Shen, Y.G. Wang, K. Wang, et al., Research on fuel cycle of thorium advanced CANDU reactor, Atomic Energy Sci. Technol. 41 (02) (2007) 194-198 (in chinese).
  22. S.H. Zhang, J.Q. Shan, Fuel management of CANDU reactor, Nucl. Power Eng. 20 (6) (1999) 543-548 (in chinese).
  23. B. Rouben, Fuel Management in CANDU, Report, AECL, 1997, pp. 11-14.
  24. R. Chambon, Optimisation de la gestion du combustible dans les reacteurs CANDU refroidis a l'eau legere (Ph.D. thesis), Ecole Polytechnique de Montreal, Montreal, Canada, 2006.