DOI QR코드

DOI QR Code

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel

  • 투고 : 2018.07.09
  • 심사 : 2018.09.29
  • 발행 : 2019.04.25

초록

The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.

키워드

참고문헌

  1. H.R. Vega-Carrillo, I.R. Esparza-Garcia, A. Sanchez, Features of a subcritical nuclear reactor, Ann. Nucl. Energy 75 (2015) 101-106. https://doi.org/10.1016/j.anucene.2014.08.006
  2. N. Xoubi, Calculation of the power and absolute flux of a source driven subcritical assembly using Monte Carlo MCNP code, Ann. Nucl. Energy 97 (2016) 96-101. https://doi.org/10.1016/j.anucene.2016.07.009
  3. G. Klujber, J.L. Kloosterman, D. De Haas, Neutron noise measurements at the delphi subcritical assembly, in: Proc. PHYSOR 2012 Adv. React. Phys. - Link. Res. Ind. Educ, 2012, pp. 1-18.
  4. A. Talamo, et al., MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly, Nucl. Eng. Des. 241 (5) (2011) 1606-1615. https://doi.org/10.1016/j.nucengdes.2011.03.006
  5. N. Xoubi, Neutronic design study of accelerator driven system (ADS) for Jordan subcritical reactor as a neutron source for nuclear research, Appl. Radiat. Isot. 131 (2018) 71-76. https://doi.org/10.1016/j.apradiso.2017.11.011
  6. C.D. Bowman, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. A 320 (1-2) (1992) 336-367. https://doi.org/10.1016/0168-9002(92)90795-6
  7. C. Rubbia, et al., Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier, 1995. CERN/AT/95-44.
  8. G. Perret, et al., Kinetic parameter measurements in the MINERVE reactor, IEEE Trans. Nucl. Sci. 64 (1) (2017) 724-734. https://doi.org/10.1109/TNS.2016.2637569
  9. A. Herrera-Martinez, Y. Kadi, G. Parks, M. Dahlfors, Transmutation of nuclear waste in accelerator-driven systems: fast spectrum, Ann. Nucl. Energy 34 (7) (2007) 564-578. https://doi.org/10.1016/j.anucene.2007.02.008
  10. Z. Chen, Y. Wu, B. Yuan, D. Pan, Nuclear waste transmutation performance assessment of an accelerator driven subcritical reactor for waste transmutation (ADS-NWT), Ann. Nucl. Energy 75 (2015) 723-727. https://doi.org/10.1016/j.anucene.2014.09.002
  11. W. Kim, H.C. Lee, C.H. Pyeon, H.C. Shin, D. Lee, Monte Carlo analysis of the accelerator-driven system at kyoto university research reactor Institute, Nucl. Eng. Technol. 48 (2) (2016) 304-317. https://doi.org/10.1016/j.net.2015.12.001
  12. C. Rubbia, et al., Neutronic Analyses of the Trade Demonstration Facility, vol. 5639, 2004, pp. 103-123. October.
  13. X-5 Monte Carlo Team, "MCNP - a General Monte Carlo N-particle Transport Code, Version 5." LA-CP-03-0245, LANL, 2003.
  14. A. Dall'Osso, The influence of the neutron source spectrum on the infinite homogeneous reactor in subcritical condition, Ann. Nucl. Energy 77 (2015) 408-414. https://doi.org/10.1016/j.anucene.2014.12.006
  15. Z.I. Zafar, M.H. Kim, Embedded fission source approach to analyze external source effect in a subcritical reactor, Nucl. Eng. Des. 327 (2018) 238-247. April 2016. https://doi.org/10.1016/j.nucengdes.2017.11.039
  16. N. Xoubi, Neutrons and gamma-ray dose calculations in subcritical reactor facility using MCNP, Atoms 4 (3) (2016) 20. https://doi.org/10.3390/atoms4030020
  17. A. Gandini, On the multiplication factor and reactivity definitions for subcritical reactor systems, Ann. Nucl. Energy 29 (6) (Apr. 2002) 645-657. https://doi.org/10.1016/S0306-4549(01)00073-1
  18. K. Nishihara, T. Iwasaki, Y. Udagawa, A new static and dynamic one-point equation and analytic and numerical calculations for a subcritical system, J. Nucl. Sci. Technol. 40 (7) (2003) 481-492. https://doi.org/10.1080/18811248.2003.9715382
  19. H. Shahbunder, C.H. Pyeon, T. Misawa, J.Y. Lim, S. Shiroya, Subcritical multiplication factor and source efficiency in accelerator-driven system, Ann. Nucl. Energy 37 (9) (2010) 1214-1222. https://doi.org/10.1016/j.anucene.2010.04.010
  20. S. Zhou, et al., LAVENDER: a steady-state core analysis code for design studies of accelerator driven subcritical reactors, Nucl. Eng. Des. 278 (2014) 434-444. https://doi.org/10.1016/j.nucengdes.2014.07.027
  21. M. Turkmen, U. Colak, S. Ergun, Effect of burnup on the neutronic parameters of ITU TRIGA Mark II research reactor, Prog. Nucl. Energy 83 (2015) 26-34. https://doi.org/10.1016/j.pnucene.2015.02.012
  22. Z. Stancar, L. Barbot, C. Destouches, D. Fourmentel, J.F. Villard, L. Snoj, Computational validation of the fission rate distribution experimental benchmark at the JSI TRIGA Mark II research reactor using the Monte Carlo method, Ann. Nucl. Energy 112 (2018) 94-108. https://doi.org/10.1016/j.anucene.2017.09.039
  23. M.B. Chadwick, et al., ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060. https://doi.org/10.1016/j.nds.2006.11.001
  24. R.K. Meulekamp, S.C. Van Der Marck, Calculating the effective delayed neutron fraction with Monte Carlo, Nucl. Sci. Eng. 152 (August) (2006) 142-148. https://doi.org/10.13182/NSE03-107
  25. B.C. Kiedrowski, et al., "MCNP5-1.60 Feature Enhancements & Manual Clarifications," No. LA-UR-10-06217, 2010.
  26. R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148. https://doi.org/10.1016/j.apradiso.2014.12.017
  27. International Atomic Energy Agency (IAEA) TRS 403, Compendium of Neutron Spectra and Detector Responses, 2001, p. 276, 403.
  28. N. Xu, et al., Elemental composition in sealed plutonium-beryllium neutron sources, Appl. Radiat. Isot. 95 (2015) 85-89. https://doi.org/10.1016/j.apradiso.2014.10.013
  29. L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 37 (2) (2010) 223-229. https://doi.org/10.1016/j.anucene.2009.10.020
  30. B. Verboomen, W. Haeck, P. Baeten, Monte Carlo calculation of the effective neutron generation time, Ann. Nucl. Energy 33 (10) (2006) 911-916. https://doi.org/10.1016/j.anucene.2006.05.001
  31. M. Hassanzadeh, S.A.H. Feghhi, H. Khalafi, Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors, Nucl. Eng. Des. 262 (2013) 404-408. https://doi.org/10.1016/j.nucengdes.2013.04.037
  32. R.K. Meulekamp, S.C. Van Der Marck, Calculating the effective delayed neutron fraction with Monte Carlo, Nucl. Sci. Eng. 152 (2006) 142-148. https://doi.org/10.13182/NSE03-107

피인용 문헌

  1. Mini Subcritical Nuclear Reactor vol.6, pp.2, 2019, https://doi.org/10.15415/jnp.2019.62026
  2. Simulation Of Fuel Ball Dimensional Size And Uranium Enhancement For High Temperature Reactor vol.202, 2019, https://doi.org/10.1051/e3sconf/202020210001
  3. Calculation of the Neutron Parameters for Accelerator-Driven Subcritical Reactors vol.2021, 2019, https://doi.org/10.1155/2021/5284580
  4. Review of modeling experience during operation and decommissioning of RBMK-1500 reactors. I. Safety improvement studies during operation vol.380, 2019, https://doi.org/10.1016/j.nucengdes.2020.110952