DOI QR코드

DOI QR Code

Mesenchymal stem cells for restoration of ovarian function

  • Received : 2018.12.27
  • Accepted : 2019.02.08
  • Published : 2019.03.31

Abstract

With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

Keywords

References

  1. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641-50. https://doi.org/10.1002/jor.1100090504
  2. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone 1992;13:81-8. https://doi.org/10.1016/8756-3282(92)90364-3
  3. Nakahara H, Bruder SP, Goldberg VM, Caplan AI. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res 1990:223-32.
  4. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017;6:2173-85. https://doi.org/10.1002/sctm.17-0129
  5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-7. https://doi.org/10.1080/14653240600855905
  6. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev 2006;2:155-62. https://doi.org/10.1007/s12015-006-0022-y
  7. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012;35:213-21. https://doi.org/10.1007/s12272-012-0202-z
  8. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013;34:747-54. https://doi.org/10.1038/aps.2013.50
  9. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 2017;6:1445-51. https://doi.org/10.1002/sctm.17-0051
  10. Cosgrove CM, Salani R. Ovarian effects of radiation and cytotoxic chemotherapy damage. Best Pract Res Clin Obstet Gynaecol 2019;55:37-48. https://doi.org/10.1016/j.bpobgyn.2018.07.008
  11. Nelson LM. Clinical practice: primary ovarian insufficiency. N Engl J Med 2009;360:606-14. https://doi.org/10.1056/NEJMcp0808697
  12. Sukur YE, Kivancli IB, Ozmen B. Ovarian aging and premature ovarian failure. J Turk Ger Gynecol Assoc 2014;15:190-6. https://doi.org/10.5152/jtgga.2014.0022
  13. Ben-Aharon I, Shalgi R. What lies behind chemotherapy-induced ovarian toxicity? Reproduction 2012;144:153-63. https://doi.org/10.1530/REP-12-0121
  14. Yuksel A, Bildik G, Senbabaoglu F, Akin N, Arvas M, Unal F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod 2015;30:2926-35. https://doi.org/10.1093/humrep/dev256
  15. Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 2012;356:24-30. https://doi.org/10.1016/j.mce.2011.05.027
  16. Bertoldo MJ, Walters KA, Ledger WL, Gilchrist RB, Mermillod P, Locatelli Y. In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod Biomed Online 2018;36:491-9. https://doi.org/10.1016/j.rbmo.2018.01.014
  17. Chang EM, Lim E, Yoon S, Jeong K, Bae S, Lee DR, et al. Cisplatin induces overactivation of the dormant primordial follicle through PTEN/AKT/FOXO3a pathway which leads to loss of ovarian reserve in mice. PLoS One 2015;10:e0144245. https://doi.org/10.1371/journal.pone.0144245
  18. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 2008;319:611-3. https://doi.org/10.1126/science.1152257
  19. Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev 2018;14:1-12. https://doi.org/10.1007/s12015-017-9765-x
  20. Gabr H, Elkheir WA, El-Gazzar A. Autologous stem cell transplantation in patients with idiopathic premature ovarian failure. J Tissue Sci Eng 2016;7(3 Suppl):27.
  21. Edessy M, Hosni HN, Shady Y, Waf Y, Bakr S, Kamel M. Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Med Int 2016;3:19-23. https://doi.org/10.5530/ami.2016.1.7
  22. Ding C, Zou Q, Wang F, Wu H, Chen R, Lv J, et al. Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 2018;9:55. https://doi.org/10.1186/s13287-018-0781-9
  23. Grady ST, Watts AE, Thompson JA, Penedo MC, Konganti K, Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J Assist Reprod Genet 2018 Nov 23 [Epub]. https://doi.org/10.1007/s10815-018-1371-6.
  24. Kalhori Z, Azadbakht M, Soleimani Mehranjani M, Shariatzadeh MA. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy 2018;20:1445-58. https://doi.org/10.1016/j.jcyt.2018.09.005
  25. Feng P, Li P, Tan J. Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/AKT signaling. Stem Cell Rev 2018 Dec 17 [Epub]. https://doi.org/10.1007/s12015-018-9867-0.
  26. Bao R, Xu P, Wang Y, Wang J, Xiao L, Li G, et al. Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecol Endocrinol 2018;34:320-6. https://doi.org/10.1080/09513590.2017.1393661
  27. Ling L, Feng X, Wei T, Wang Y, Wang Y, Zhang W, et al. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res Ther 2017;8:283. https://doi.org/10.1186/s13287-017-0739-3
  28. Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci 2018;25:51-63. https://doi.org/10.1177/1933719117699705
  29. Yin N, Zhao W, Luo Q, Yuan W, Luan X, Zhang H. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by Treg cells and associated cytokines. Reprod Sci 2018;25:1073-82. https://doi.org/10.1177/1933719117732156
  30. Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell 2016;48:370-82. https://doi.org/10.1016/j.tice.2016.05.001
  31. Gabr H, Rateb MA, El Sissy MH, Ahmed Seddiek H, Ali Abdelhameed Gouda S. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microsc Res Tech 2016;79:938-47. https://doi.org/10.1002/jemt.22725
  32. Pan Y, Zhang L, Zhang X, Hu C, Liu R. Biological and biomechanical analysis of two types of mesenchymal stem cells for intervention in chemotherapy-induced ovarian dysfunction. Arch Gynecol Obstet 2017;295:247-52. https://doi.org/10.1007/s00404-016-4224-5
  33. Song D, Zhong Y, Qian C, Zou Q, Ou J, Shi Y, et al. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamideinduced premature ovarian failure rat model. Biomed Res Int 2016;2016:2517514.
  34. Su J, Ding L, Cheng J, Yang J, Li X, Yan G, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod 2016;31:1075-86. https://doi.org/10.1093/humrep/dew041
  35. Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med 2015;13:155. https://doi.org/10.1186/s12967-015-0516-y
  36. Fouad H, Sabry D, Elsetohy K, Fathy N. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure. J Adv Res 2016;7:233-41. https://doi.org/10.1016/j.jare.2015.05.002
  37. Kilic S, Pinarli F, Ozogul C, Tasdemir N, Naz Sarac G, Delibasi T. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol 2014;30:135-40. https://doi.org/10.3109/09513590.2013.860127
  38. Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev 2014;23:1548-57. https://doi.org/10.1089/scd.2013.0371
  39. Liu J, Zhang H, Zhang Y, Li N, Wen Y, Cao F, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol Cells 2014;37:865-72. https://doi.org/10.14348/molcells.2014.0145
  40. Xiao GY, Liu IH, Cheng CC, Chang CC, Lee YH, Cheng WT, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 2014;9:e106538. https://doi.org/10.1371/journal.pone.0106538
  41. Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest 2013;93:181-93. https://doi.org/10.1038/labinvest.2012.167
  42. Wang S, Yu L, Sun M, Mu S, Wang C, Wang D, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int 2013;2013:690491.
  43. Wang F, Wang L, Yao X, Lai D, Guo L. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Res Ther 2013;4:124. https://doi.org/10.1186/scrt335
  44. Zhang Y, Xia X, Yan J, Yan L, Lu C, Zhu X, et al. Mesenchymal stem cell-derived angiogenin promotes primodial follicle survival and angiogenesis in transplanted human ovarian tissue. Reprod Biol Endocrinol 2017;15:18. https://doi.org/10.1186/s12958-017-0235-8
  45. Abd-Allah SH, Shalaby SM, Pasha HF, El-Shal AS, Raafat N, Shabrawy SM, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy 2013;15:64-75. https://doi.org/10.1016/j.jcyt.2012.08.001
  46. Guo JQ, Gao X, Lin ZJ, Wu WZ, Huang LH, Dong HY, et al. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause. BMC Cell Biol 2013;14:18. https://doi.org/10.1186/1471-2121-14-18
  47. Liu T, Huang Y, Guo L, Cheng W, Zou G. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci 2012;9:592-602. https://doi.org/10.7150/ijms.4841
  48. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy 2008;10:353-63. https://doi.org/10.1080/14653240802035926
  49. Sheikhansari G, Aghebati-Maleki L, Nouri M, Jadidi-Niaragh F, Yousefi M. Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother 2018;102:254-62. https://doi.org/10.1016/j.biopha.2018.03.056
  50. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 2016;8:73-87. https://doi.org/10.4252/wjsc.v8.i3.73
  51. He Y, Chen D, Yang L, Hou Q, Ma H, Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther 2018;9:263. https://doi.org/10.1186/s13287-018-1008-9
  52. Gadkari R, Zhao L, Teklemariam T, Hantash BM. Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy. Regen Med 2014;9:453-65. https://doi.org/10.2217/rme.14.13
  53. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, et al. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 2007;25:425-36. https://doi.org/10.1634/stemcells.2006-0420
  54. Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 2008;36:350-9. https://doi.org/10.1016/j.exphem.2007.10.007
  55. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018;15:36-45. https://doi.org/10.7150/ijms.21666
  56. de Rham C, Villard J. Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J Immunol Res 2014;2014:518135. https://doi.org/10.1155/2014/518135
  57. Zhao C, Ikeya M. Generation and Applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int 2018;2018:9601623. https://doi.org/10.1155/2018/9601623
  58. Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017;28:3-18. https://doi.org/10.1016/j.tem.2016.10.003
  59. Willis GR, Kourembanas S, Mitsialis SA. Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 2017;4:63. https://doi.org/10.3389/fcvm.2017.00063
  60. Huang B, Lu J, Ding C, Zou Q, Wang W, Li H. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther 2018;9:216. https://doi.org/10.1186/s13287-018-0953-7
  61. Sun L, Li D, Song K, Wei J, Yao S, Li Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 2017;7:2552. https://doi.org/10.1038/s41598-017-02786-x
  62. Doeppner TR, Bahr M, Hermann DM, Giebel B. Concise review: extracellular vesicles overcoming limitations of cell therapies in ischemic stroke. Stem Cells Transl Med 2017;6:2044-52. https://doi.org/10.1002/sctm.17-0081

Cited by

  1. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? vol.29, 2019, https://doi.org/10.1177/0963689720926154
  2. Recent advances in understanding primary ovarian insufficiency vol.9, 2019, https://doi.org/10.12688/f1000research.26423.1
  3. Fibrin Facilitates Mesenchymal Stem Cells to Ameliorate Rats with Polycystic Ovary Syndrome vol.10, pp.10, 2020, https://doi.org/10.3390/app10103598
  4. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure vol.12, pp.8, 2020, https://doi.org/10.4252/wjsc.v12.i8.857
  5. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility vol.9, pp.10, 2019, https://doi.org/10.3390/cells9102253
  6. Chemoprotective effects of plasma derived from mice of different ages and genders on ovarian failure after cyclophosphamide treatment vol.13, 2019, https://doi.org/10.1186/s13048-020-00735-3
  7. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice vol.11, pp.1, 2019, https://doi.org/10.1186/s13287-020-01769-6
  8. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility vol.10, pp.9, 2019, https://doi.org/10.3390/cells10092460
  9. Menstrual blood CD146+ mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure vol.39, pp.8, 2019, https://doi.org/10.1002/cbf.3669
  10. Insights into stem cell therapy for premature ovarian insufficiency vol.5, pp.4, 2019, https://doi.org/10.4103/2096-2924.334379