DOI QR코드

DOI QR Code

Clinical Application of Near-Infrared Spectroscopy in Neonates

  • Jeon, Ga Won (Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine)
  • Received : 2019.06.03
  • Accepted : 2019.07.17
  • Published : 2019.08.31

Abstract

The incidence of cerebral palsy has not decreased despite advances in neonatal care. Preterm infants are at a high risk of cerebral palsy. Moreover, preterm infants might experience permanent neurological sequelae due to injury in the preterm brain. Although the etiology of preterm brain injury is not fully understood, preterm brain injury is strongly associated with abnormal cerebral perfusion and oxygenation. Monitoring systemic blood pressure or arterial oxygen saturation using pulse oximetry is not enough to guarantee proper cerebral perfusion or oxygenation. Early detection of improper cerebral perfusion can prevent irreversible cerebral damage. To decrease brain injury through the early detection of under-perfusion and deoxygenation, other diagnostic modalities are needed. Near-infrared spectroscopy can continuously and noninvasively monitor regional oxygen saturation (rSO2), which reflects the perfusion and oxygenation status of tissues at bedside. Near-infrared spectroscopy represents a balance between tissue oxygen supply and demand. Cerebral rSO2 monitoring has been used most frequently in neonatal cardiac surgery to monitor cerebral oxygenation and prevent hypoxic damage or shock. Recently, cerebral, renal, or splanchnic rSO2 in neonates is frequently monitored. The progression of a disease, brain injury, and death can be prevented by detecting changes in rSO2 values using near-infrared spectroscopy. In this article, the basic principles, usefulness, and applications of near-infrared spectroscopy in neonates are discussed.

Keywords

References

  1. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 2017;171:897-907. https://doi.org/10.1001/jamapediatrics.2017.1689
  2. Babcock MA, Kostova FV, Ferriero DM, Johnston MV, Brunstrom JE, Hagberg H, et al. Injury to the preterm brain and cerebral palsy: clinical aspects, molecular mechanisms, unanswered questions, and future research directions. J Child Neurol 2009; 24:1064-84. https://doi.org/10.1177/0883073809338957
  3. Van Bel F, Van de Bor M, Stijnen T, Baan J, Ruys JH. Aetiological role of cerebral blood-flow alterations in development and extension of peri-intraventricular haemorrhage. Dev Med Child Neurol 1987;29:601-14. https://doi.org/10.1111/j.1469-8749.1987.tb08502.x
  4. Verhagen EA, Van Braeckel KN, van der Veere CN, Groen H, Dijk PH, Hulzebos CV, et al. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev Med Child Neurol 2015;57:449-55. https://doi.org/10.1111/dmcn.12622
  5. Borch K, Lou HC, Greisen G. Cerebral white matter blood flow and arterial blood pressure in preterm infants. Acta Paediatr 2010;99:1489-92. https://doi.org/10.1111/j.1651-2227.2010.01856.x
  6. Wong FY, Silas R, Hew S, Samarasinghe T, Walker AM. Cerebral oxygenation is highly sensitive to blood pressure variability in sick preterm infants. PLoS One 2012;7:e43165. https://doi.org/10.1371/journal.pone.0043165
  7. Marin T, Moore J. Understanding near-infrared spectroscopy. Adv Neonatal Care 2011;11:382-8. https://doi.org/10.1097/ANC.0b013e3182337ebb
  8. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 2000;93:947-53. https://doi.org/10.1097/00000542-200010000-00012
  9. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med 2015;20: 164-72. https://doi.org/10.1016/j.siny.2015.03.008
  10. Grometto A, Pizzo B, Strozzi MC, Gazzolo F, Gazzolo D. Cerebral NIRS patterns in late preterm and very preterm infants becoming late preterm. J Matern Fetal Neonatal Med 2019;32:1124-9. https://doi.org/10.1080/14767058.2017.1401605
  11. Garvey AA, Dempsey EM. Applications of near infrared spectroscopy in the neonate. Curr Opin Pediatr 2018;30:209-15. https://doi.org/10.1097/MOP.0000000000000599
  12. McCormick PW, Stewart M, Goetting MG, Dujovny M, Lewis G, Ausman JI. Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med 1991;19:89-97. https://doi.org/10.1097/00003246-199101000-00020
  13. Lemmers PM, Toet M, van Schelven LJ, van Bel F. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome. Exp Brain Res 2006;173:458-67. https://doi.org/10.1007/s00221-006-0388-8
  14. Petrova A, Mehta R. Near-infrared spectroscopy in the detection of regional tissue oxygenation during hypoxic events in preterm infants undergoing critical care. Pediatr Crit Care Med 2006;7:449-54. https://doi.org/10.1097/01.pcc.0000235248.70482.14
  15. McNeill S, Gatenby JC, McElroy S, Engelhardt B. Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants. J Perinatol 2011;31:51-7. https://doi.org/10.1038/jp.2010.71
  16. Sorensen LC, Leung TS, Greisen G. Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias. J Biomed Opt 2008;13:064013. https://doi.org/10.1117/1.3013454
  17. Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol 2003;15:302-6. https://doi.org/10.1097/00008506-200310000-00002
  18. Schwaberger B, Pichler G, Binder-Heschl C, Baik N, Avian A, Urlesberger B. Transitional changes in cerebral blood volume at birth. Neonatology 2015;108:253-8. https://doi.org/10.1159/000437347
  19. Kenosi M, O'Toole JM, Livingston V, Hawkes GA, Boylan GB, O'Halloran KD, et al. Effects of fractional inspired oxygen on cerebral oxygenation in preterm infants following delivery. J Pediatr 2015;167:1007-12. https://doi.org/10.1016/j.jpeds.2015.07.063
  20. van Vonderen JJ, Roest AA, Siew ML, Walther FJ, Hooper SB, te Pas AB. Measuring physiological changes during the transition to life after birth. Neonatology 2014;105:230-42. https://doi.org/10.1159/000356704
  21. Pichler G, Binder C, Avian A, Beckenbach E, Schmolzer GM, Urlesberger B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr 2013;163:1558-63. https://doi.org/10.1016/j.jpeds.2013.07.007
  22. Sorensen LC, Greisen G. The brains of very preterm newborns in clinically stable condition may be hyperoxygenated. Pediatrics 2009;124:e958-63. https://doi.org/10.1542/peds.2008-2394
  23. Toet MC, Lemmers PM. Brain monitoring in neonates. Early Hum Dev 2009;85:77-84. https://doi.org/10.1016/j.earlhumdev.2008.11.007
  24. Toet MC, Lemmers PM, van Schelven LJ, van Bel F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 2006;117:333-9. https://doi.org/10.1542/peds.2005-0987
  25. Wintermark P, Hansen A, Warfield SK, Dukhovny D, Soul JS. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 2014;85 Pt 1:287-93. https://doi.org/10.1016/j.neuroimage.2013.04.072
  26. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 2016;79:55-64. https://doi.org/10.1038/pr.2015.186
  27. Pellicer A, Greisen G, Benders M, Claris O, Dempsey E, Fumagalli M, et al. The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology 2013;104:171-8. https://doi.org/10.1159/000351346
  28. Tina LG, Frigiola A, Abella R, Artale B, Puleo G, D'Angelo S, et al. Near infrared spectroscopy in healthy preterm and term newborns: correlation with gestational age and standard monitoring parameters. Curr Neurovasc Res 2009;6:148-54. https://doi.org/10.2174/156720209788970090
  29. Wong FY, Leung TS, Austin T, Wilkinson M, Meek JH, Wyatt JS, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 2008;121:e604-11. https://doi.org/10.1542/peds.2007-1487
  30. Riera J, Cabanas F, Serrano JJ, Madero R, Pellicer A. New developments in cerebral blood flow autoregulation analysis in preterm infants: a mechanistic approach. Pediatr Res 2016;79:460-5. https://doi.org/10.1038/pr.2015.231
  31. Lemmers PM, Benders MJ, D'Ascenzo R, Zethof J, Alderliesten T, Kersbergen KJ, et al. Patent ductus arteriosus and brain volume. Pediatrics 2016;137:e20153090. https://doi.org/10.1542/peds.2015-3090
  32. Lemmers PM, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 2008;121:142-7. https://doi.org/10.1542/peds.2007-0925
  33. Schwarz CE, Preusche A, Wolf M, Poets CF, Franz AR. Prospective observational study on assessing the hemodynamic relevance of patent ductus arteriosus with frequency domain near-infrared spectroscopy. BMC Pediatr 2018;18:66. https://doi.org/10.1186/s12887-018-1054-6
  34. Patel J, Roberts I, Azzopardi D, Hamilton P, Edwards AD. Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatr Res 2000; 47:36-42. https://doi.org/10.1203/00006450-200001000-00009
  35. Underwood MA, Milstein JM, Sherman MP. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology 2007;91:134-9. https://doi.org/10.1159/000097131
  36. Huning BM, Asfour B, Konig S, Hess N, Roll C. Cerebral blood volume changes during closure by surgery of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 2008;93:F261-4. https://doi.org/10.1136/adc.2007.121715
  37. Lemmers PM, Molenschot MC, Evens J, Toet MC, van Bel F. Is cerebral oxygen supply compromised in preterm infants undergoing surgical closure for patent ductus arteriosus? Arch Dis Child Fetal Neonatal Ed 2010;95:F429-34. https://doi.org/10.1136/adc.2009.180117
  38. Vanderhaegen J, De Smet D, Meyns B, Van De Velde M, Van Huffel S, Naulaers G. Surgical closure of the patent ductus arteriosus and its effect on the cerebral tissue oxygenation. Acta Paediatr 2008;97:1640-4. https://doi.org/10.1111/j.1651-2227.2008.01021.x
  39. Uebing A, Furck AK, Hansen JH, Nufer E, Scheewe J, Dutschke P, et al. Perioperative cerebral and somatic oxygenation in neonates with hypoplastic left heart syndrome or transposition of the great arteries. J Thorac Cardiovasc Surg 2011;142:523-30. https://doi.org/10.1016/j.jtcvs.2011.01.036
  40. Hansen JH, Schlangen J, Voges I, Jung O, Wegmann A, Scheewe J, et al. Impact of afterload reduction strategies on regional tissue oxygenation after the Norwood procedure for hypoplastic left heart syndrome. Eur J Cardiothorac Surg 2014;45:e13-9. https://doi.org/10.1093/ejcts/ezt538
  41. Phelps HM, Mahle WT, Kim D, Simsic JM, Kirshbom PM, Kanter KR, et al. Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg 2009;87:1490-4. https://doi.org/10.1016/j.athoracsur.2009.01.071
  42. Patel AK, Lazar DA, Burrin DG, Smith EO, Magliaro TJ, Stark AR, et al. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis. Pediatr Crit Care Med 2014;15:735-41. https://doi.org/10.1097/PCC.0000000000000211
  43. Schat TE, Schurink M, van der Laan ME, Hulscher JB, Hulzebos CV, Bos AF, et al. Near-infrared spectroscopy to predict the course of necrotizing enterocolitis. PLoS One 2016;11:e0154710. https://doi.org/10.1371/journal.pone.0154710

Cited by

  1. Risk Factors and Neonatal Outcomes of Patent Ductus Arteriosus Ligation in Preterm Infants in a Single Center over 6 Years vol.31, pp.4, 2020, https://doi.org/10.14734/pn.2020.31.4.191