DOI QR코드

DOI QR Code

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin (Key Lab of Smart Prevention and Mitigation for Civil Engineering Disasters of the Ministry of Industry and Information, Harbin Institute of Technology) ;
  • Wu, Buchen (School of Civil Engineering, Harbin Institute of Technology) ;
  • Jiang, Chao (School of Civil Engineering, Harbin Institute of Technology) ;
  • Chen, Wenli (Key Lab of Smart Prevention and Mitigation for Civil Engineering Disasters of the Ministry of Industry and Information, Harbin Institute of Technology) ;
  • Li, Hui (Key Lab of Smart Prevention and Mitigation for Civil Engineering Disasters of the Ministry of Industry and Information, Harbin Institute of Technology)
  • 투고 : 2018.03.19
  • 심사 : 2018.08.17
  • 발행 : 2019.05.25

초록

For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

키워드

과제정보

연구 과제 주관 기관 : NSFC, China Postdoctoral Science Foundations

참고문헌

  1. Bruno, L. and Khris, S. (2003), "The validity of 2D Numerical simulations of vortical Structures around a bridge deck", Math. Comput. Model., 37(7-8), 795-828. https://doi.org/10.1016/S0895-7177(03)00087-6.
  2. Cherry, N.J., Hillier, R. and Latour, M.E.M.P. (1984), "Unsteady measurements in a separated and reattaching flow", J. Fluid Mech, 144, 13-46. https://doi.org/10.1017/S002211208400149X.
  3. Chun, S., Liu, Y.Z. and Sung, H.J. (2004), "Wall pressure fluctuations of a turbulence separated and reattaching flow affected by an unsteady wake", Exp. Fluids, 37(4), 531-546. https://doi.org/10.1007/s00348-004-0839-6
  4. Dragomirescu, E., Wang, Z. and Hoftyzer, M.S. (2016), "Aerodynamic characteristics investigation of megane multibox bridge deck by CFD-LES simulations and experimental tests", Wind Struct., 22(2), 161-184. https://doi.org/10.12989/was.2016.22.2.161.
  5. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Fluid. A: Fluid Dynam., 3(7), 1760-1765. https://doi.org/10.1063/1.857955.
  6. Horton, H.P. (1968), "Laminar separation in two and threedimensional incompressible flow", PhD Dissertation, University of London, London.
  7. Kargarmoakhar, R., Chowdhury, A.G. and Irwin, P.A. (2015), "Reynolds number effects on twin box girder long span bridge aerodynamics", Wind Struct., 20(2), 327-347. https://doi.org/10.12989/was.2015.20.2.327.
  8. Kiya, M. and Sasaki, K. (1983), "Structure of a turbulent separation bubble", J. Fluid Mech., 137, 83-113. https://doi.org/10.1017/S002211208300230X.
  9. Kiya, M. and Sasaki, K. (1985), "Structure of. large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble", J. Fluid Mech., 154, 463-491. https://doi.org/10.1017/S0022112085001628.
  10. Kuroda, S. (1997), "Numerical simulation of flow around a box girder of a long span suspension bridge", J. Wind Eng. Ind. Aerod., 67-68, 239-252. https://doi.org/10.1016/S0167-6105(97)00076-7.
  11. Laima, S., Jiang, C., Li, H., Chen, W. and Ou, J. (2018), "A numerical investigation of Reynolds number sensitivity of flow characteristics around a twin-box girder", J. Wind Eng. Ind. Aerod., 172, 298-316. https://doi.org/10.1016/j.jweia.2017.11.016.
  12. Larose, G.L. and D'Auteuil, A. (2006), "On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges", J. Wind Eng. Ind. Aerod., 94(5), 365-376. https://doi.org/10.1016/j.jweia.2006.01.011.
  13. Larsen, A. and Walter, J.H. (1997), "Aeroelastic analysis of bridge girder sections based on discrete vortex simulations", J. Wind Eng. Ind. Aerod., 67-68, 253-265. https://doi.org/10.1016/S0167-6105(97)00077-9.
  14. Larsen, A., Savage, M., Lafreniere, A. and Larsen, S.V. (2008), "Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers", J. Wind Eng. Ind. Aerod., 96(6), 934-944. https://doi.org/10.1016/j.jweia.2007.06.020.
  15. Lee, D., Kawai, S., Nonomura, T., Anyoji, M., Aono, M., Oyama, A., Asai, K., and Fujii, K. (2015), "Mechanism of surface pressure distribution within a laminar separation bubble at different Reynolds numbers", Phys. Fluids., 27(2), 023602-1-22. https://doi.org/10.1063/1.4913500.
  16. Lee, I. and Sung, H.J. (2001), "Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: part 1. Time-mean statistics and crossspectral analyses", Exp. Fluids., 30(3), 262-272. https://doi.org/10.1007/s003480000172
  17. Li, H., Laima, S.J. and Jing, H.Q. (2014), "Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder", J. Fluid. Struct., 50, 358-375. https://doi.org/10.1016/j.jfluidstructs.2014.06.027.
  18. Lilly, D.K. (1992), "A proposed modification of the germane subgrid-scale closure model", Phys. Fluid. A: Fluid Dynam., 4(3), 633-635. https://doi.org/10.1063/1.858280.
  19. Liu, Z.L., Kang, W. and Sung, H.J. (2005), "Assessment of organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations", Exp. Fluids, 38(4), 485-493 https://doi.org/10.1007/s00348-005-0929-0
  20. Mannini, C., Soda, A., VoB, R. and Schewe, G. (2010), "Unsteady RANS simulation of flow around a bridge section", J. Wind Eng. Ind. Aerod., 98(12), 742-753. https://doi.org/10.1016/j.jweia.2010.06.010.
  21. Miranda, S.D, Patruno, L, Ricci, M. and Ubertini, F. (2015), "Numerical study of a twin box bridge deck with increasing gap ratio by using RANS and LES approaches", Eng. Struct., 99, 546-558. https://doi.org/10.1016/j.engstruct.2015.05.017.
  22. Nicoud, F. and Ducros, F. (1999), "Subgrid-Scale stress modelling based on the square of the velocity gradient tensor", Flow Turbul.Combust., 62(3), 183-200 https://doi.org/10.1023/A:1009995426001
  23. Nieto, F., Hernandez, S., Jurado, J.A. and Baldomir, A. (2010), "CFD practical application in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4) 309-326. https://doi.org/10.12989/was.2010.13.4.309.
  24. Norberg, C. (2003), "Fluctuating lift on a circular cylinder: Review and new measurements", J. Fluid. Struct., 17(1), 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3.
  25. Ota, T., Asano, Y. and Okawa, J. (1981), "Reattachment length and Transition of the separated flow over bluff flat plates", Bulletin JSME, 24(192), 941-947. https://doi.org/10.1299/jsme1958.24.941.
  26. Sasaki, K. and Kiya M. (1991), "Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers", J. Fluid. Eng., 113(3), 405-410. doi:10.1115/1.2909510.
  27. Schewe, G. (2001), "Reynolds number effects in flow around more-or-less bluff bodies", J. Wing Eng., 89, 1267-1289.
  28. Schewe, G. and Larsen, A. (1998), "Reynolds number effects in the flow around a bluff bridge deck across section", J. Wind Eng. Ind. Aerod., 74-76, 829-838. https://doi.org/10.1016/S0167-6105(98)00075-0.
  29. Wang, X. and Gu, M. (2015), "Experimental investigation of Reynolds number effects on 2d rectangular prisms with various side ratios and rounded corners", Wind Struct., 21(2), 183-202. https://doi.org/10.12989/was.2015.21.2.183.
  30. Watanabe, S. and Fumoto, K. (2008), "Aerodynamic study of slotted box girder using computational fluid dynamics", J. Wind Eng. Ind. Aerod., 96(10-11), 1885-1894. https://doi.org/10.1016/j.jweia.2008.02.056.
  31. Williamson, C.H.K. (1996), "Vortex dynamics in the cylinder wake", Annu. Rev. Fluid. Mech., 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401.
  32. Yang, Z. and Voke, P.R. (2001), "Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature", J. Fluid. Mech., 439, 305-333. https://doi.org/10.1017/S0022112001004633.
  33. Zdravkovich, M.M. (1997), Flow around circular cylinders Volume 1: Fundamentals, Oxford Science Publications, USA
  34. Zhang, W., Ge, Y.J., Wei, Z.G. and Yang, Y.X. (2008), "Experiments on vortex induced vibration of twin-box bridge sections in high and low Reynolds numbers", Acta Aerod. Sin, 26(3), 356-359 (in Chinese). https://doi.org/10.3969/j.issn.0258-1825.2008.03.015
  35. Zhou, Z. and Ma, R. (2010), "Numerical simulation study of the Reynolds number effect on two bridge decks based on the deterministic vortex method", Wind Struct., 13(13), 347-362. https://doi.org/10.12989/was.2010.13.4.347.