DOI QR코드

DOI QR Code

The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles

  • Balaz, Matej (Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences) ;
  • Balazova, Ludmila (Department of Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy) ;
  • Kovacova, Maria (Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences) ;
  • Daneu, Nina (Advanced Materials Department, Jozef Stefan Institute) ;
  • Salayova, Aneta (Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy) ;
  • Bedlovicova, Zdenka (Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy) ;
  • Tkacikova, Ludmila (Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy)
  • 투고 : 2018.10.30
  • 심사 : 2019.04.05
  • 발행 : 2019.03.25

초록

The Origanum vulgare L.-mediated synthesis of Ag nanoparticles was successfully realized within the present study. Various concentrations of the $AgNO_3$ used as a silver precursor (1, 2.5, 5, 10 and 100 mM) were used. Very rapid formation of Ag nanoparticles was observed, as only minutes were necessary for the completion of the reaction. With the increasing concentration, red shift of the surface plasmon resonance peak was observed in the Vis spectra. According to photon cross-correlation spectroscopy results, the finest grain size distribution was obtained for the 2.5 mM sample. The transmission electron microscopy analysis of this sample has shown bimodal size distribution with larger crystallites with 100 nm size and smaller around 10 nm. The antibacterial activity was also the best for this sample so the positive correlation between good grain size distribution and antibacterial activity was found. The in-depth discussion of antibacterial activity with related works from the materials science point of view is provided, namely emphasizing the role of effective nanoparticles distribution within the plant extract or matrix. The antibacterial activity seems to be governed by both content of Ag nanoparticles and their effective distribution. This work contributes to still expanding environmentally acceptable field of green synthesis of silver nanoparticles.

키워드

과제정보

연구 과제번호 : Antioxidant and antibacterial activity of silver nanoparticles prepared using plant extracts

연구 과제 주관 기관 : Slovak Research and Development Agency, Slovak Grant Agency VEGA, Slovenian Research Agency

참고문헌

  1. Abbasi, A.M., Shah, M.H., Li, T., Fu, X., Guo, X.B. and Liu, R.H. (2015), "Ethnomedicinal values, phenolic contents and antioxidant properties of wild culinary vegetables", J. Ethnopharmacol., 162, 333-345. https://doi.org/10.1016/j.jep.2014.12.051
  2. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A. and Ammar, R.A.A. (2010), "Synthesis and applications of silver nanoparticles", Arab. J. Chem., 3(3), 135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  3. Agnihotri, S., Mukherji, S. and Mukherji, S. (2014), "Sizecontrolled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy", Rsc Adv., 4(8), 3974-3983. https://doi.org/10.1039/C3RA44507K
  4. Ahmed, S., Ahmad, M., Swami, B.L. and Ikram, S. (2016), "A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise", J. Adv Res., 7(1), 17-28. https://doi.org/10.1016/j.jare.2015.02.007
  5. Balaz, M., Balazova, L., Daneu, N., Dutkova, E., Balazova, M., Bujnakova, Z. and Shpotyuk, Y. (2017a), "Plant-mediated synthesis of silver nanoparticles and their stabilization by wet stirred media milling", Nanoscale Res. Lett., 12, 83-91. https://doi.org/10.1186/s11671-017-1860-z
  6. Balaz, M., Daneu, N., Balazova, L., Dutkova, E., Tkacikova, L., Briancin, J., Vargova, M., Balazova, M., Zorkovska, A. and Balaz, P. (2017b), "Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity", Adv. Powder Technol., 28, 3307-3312. https://doi.org/10.1016/j.apt.2017.09.028
  7. Beyene, H.D., Werkneh, A.A., Bezabh, H.K. and Ambaye, T.G. (2017), "Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review", Sustain. Mater. Technol., 13, 18-23.
  8. de Souza, T.A.J., Souza, L.R.R. and Franchi, L.P. (2019), "Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity", Ecotoxicol. Environ. Safety, 171, 691-700. https://doi.org/10.1016/j.ecoenv.2018.12.095
  9. Deshmukh, S.P., Patil, S.M., Mullani, S.B. and Delekar, S.D. (2019), "Silver nanoparticles as an effective disinfectant: A review", Mater. Sci. Eng. C-Mater. Biol. Appl., 97, 954-965. https://doi.org/10.1016/j.msec.2018.12.102
  10. Fahimirad, S., Ajalloueian, F. and Ghorbanpour, M. (2019), "Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts", Ecotoxicol. Environ. Safety, 168, 260-278. https://doi.org/10.1016/j.ecoenv.2018.10.017
  11. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. and Galdiero, M. (2015), "Silver nanoparticles as potential antibacterial agents", Molecules, 20(5), 8856-8874. https://doi.org/10.3390/molecules20058856
  12. Gelle, A. and Moores, A. (2019), "Plasmonic nanoparticles: Photocatalysts with a bright future", Current Opinion in Green and Sustainable Chemistry, 15, 60-66. https://doi.org/10.1016/j.cogsc.2018.10.002
  13. Ibrahim, H.M.M. (2015), "Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms", J. Radiat. Res. Appl. Sci., 8(3), 265-275. https://doi.org/10.1016/j.jrras.2015.01.007
  14. Iravani, S., Korbekandi, H., Mirmohammadi, S.V. and Zolfaghari, B. (2014), "Synthesis of silver nanoparticles: chemical, physical and biological methods", Res. Pharmaceut. Sci, 9(6), 385-486.
  15. Kang, H., Buchman, J.T., Rodriguez, R.S., Ring, H.L., He, J.Y., Bantz, K.C. and Haynes, C.L. (2019), "Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities", Chem. Rev., 119(1), 664-699. https://doi.org/10.1021/acs.chemrev.8b00341
  16. Khan, M., Khan, S.T., Khan, M., Adil, S.F., Musarrat, J., Al-Khedhairy, A.A., Al-Warthan, A., Siddiqui, M.R.H. and Alkhathlan, H.Z. (2014), "Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant", Int. J.of Nanomed., 9, 3551-3565.
  17. Kravets, V., Almemar, Z., Jiang, K., Culhane, K., Machado, R., Hagen, G., Kotko, A., Dmytruk, I., Spendier, K. and Pinchuk, A. (2016), "Imaging of Biological Cells Using Luminescent Silver Nanoparticles", Nanoscale Res. Lett., 11, art. ID 30.
  18. Lee, S.W., Chang, S.H., Lai, Y.S., Lin, C.C., Tsai, C.M., Lee, Y.C., Chen, J.C. and Huang, C.L. (2014), "Effect of Temperature on the Growth of Silver Nanoparticles Using Plasmon-Mediated Method under the Irradiation of Green LEDs", Materials, 7(12), 7781-7798. https://doi.org/10.3390/ma7127781
  19. Liang, C.H., Chan, L.P., Ding, H.Y., So, E.C., Lin, R.J., Wang, H.M., Chen, Y.G. and Chou, T.H. (2012), "Free radical scavenging activity of 4-(3,4-dihydroxybenzoyloxymethyl) phenyl-O-beta-D-glucopyranoside from Origanum vulgare and its protection against oxidative damage", J. Agricult. Food Chem., 60(31), 7690-7696. https://doi.org/10.1021/jf302329m
  20. Liao, C.Z., Li, Y.C. and Tjong, S.C. (2019), "Bactericidal and Cytotoxic Properties of Silver Nanoparticles", Int. J. Molecul. Sci., 20(2).
  21. Mabey, T., Cristaldi, D.A., Oyston, P., Lymer, K.P., Stulz, E., Wilks, S., Keevil, C.W. and Zhang, X.L. (2019), "Bacteria and nanosilver: the quest for optimal production", Critical Rev. Biotechnol., 39(2), 272-287. https://doi.org/10.1080/07388551.2018.1555130
  22. Malik, P. and Mukherjee, T.K. (2018), "Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers", Int. J. Pharmaceut., 553(1-2), 483-509. https://doi.org/10.1016/j.ijpharm.2018.10.048
  23. Maria, B.S., Devadiga, A., Kodialbail, V.S. and Saidutta, M.B. (2015), "Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract", Appl. Nanosci., 5(6), 755-762. https://doi.org/10.1007/s13204-014-0372-8
  24. McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., Dockery, P., Prendergast, M., Rowan, N. and Morris, D. (2017), "Silver nanoparticles in the environment: Sources, detection and ecotoxicology", Sci. Total Environ., 575, 231-246. https://doi.org/10.1016/j.scitotenv.2016.10.041
  25. Mogensen, K.B. and Kneipp, K. (2014), "Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring the Onset of Surface Screening Effects", J. Phys. Chem. C, 118(48), 28075-28083. https://doi.org/10.1021/jp505632n
  26. Ning, S.Y., Wu, Z.X., Dong, H., Yuan, F., Ma, L., Jiao, B. and Hou, X. (2015), "Tunable lasing on silver island films by coupling to the localized surface plasmon", Optical Mater. Express, 5(3), 629-638. https://doi.org/10.1364/OME.5.000629
  27. Nookala, S., Tollamadugu, N.V.K.V.P., Thimmavajjula, G.K. and Ernest, D. (2015), "Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines", Adv. Nano Res., Int. J., 3(2), 97-109. https://doi.org/10.12989/anr.2015.3.2.097
  28. Pandiarajan, J. and Krishnan, M. (2017), "Properties, synthesis and toxicity of silver nanoparticles", Environ. Chem. Lett., 15(3), 387-397. https://doi.org/10.1007/s10311-017-0624-4
  29. Peng, S., McMahon, J.M., Schatz, G.C., Gray, S.K. and Sun, Y.G. (2010), "Reversing the size-dependence of surface plasmon resonances", Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14530-14534. https://doi.org/10.1073/pnas.1007524107
  30. Rai, M., Yadav, A. and Gade, A. (2009), "Silver nanoparticles as a new generation of antimicrobials", Biotechnol. Adv., 27(1), 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  31. Rajan, R., Chandran, K., Harper, S.L., Yun, S.I. and Kalaichelvan, P.T. (2015), "Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials", Indust. Crops Products, 70, 356-373. https://doi.org/10.1016/j.indcrop.2015.03.015
  32. Rao, B. and Tang, R.C. (2017), "Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract", Adv. Natural Sci.: Nanosci. Nanotechnol., 8, art. ID 015014.
  33. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B. and Roullet, J.B. (2008), "Antimicrobial surface functionalization of plastic catheters by silver nanoparticles", J. Antimicrobial Chemotherapy, 61(4), 869-876. https://doi.org/10.1093/jac/dkn034
  34. Rojas, J.J., Ochoa, V.J., Ocampo, S.A. and Munoz, J.F. (2006), "Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections", BMC Complementary Alternat. Med., 6, 2. https://doi.org/10.1186/1472-6882-6-2
  35. Roy, K., Sarkar, C.K. and Ghosh, C.K. (2014), "Green Synthesis of Silver Nanoparticles Using Fruit Extract of Malus Domestica and Study of Its Antimicrobial Activity", Digest J. Nanomater. Biostruct., 9(3), 1137-1146.
  36. Roy, A., Bulut, O., Some, S., Mandal, A.K. and Yilmaz, M.D. (2019), "Green synthesis of silver nanoparticles: biomoleculenanoparticle organizations targeting antimicrobial activity", RSC Adv., 9(5), 2673-2702. https://doi.org/10.1039/C8RA08982E
  37. Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K. S. and Ravikumar, V. (2013), "Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity", Colloids Surfaces B-Biointerf., 108, 80-84. https://doi.org/10.1016/j.colsurfb.2013.02.033
  38. Shaik, M.R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H.Z., Siddiqui, M.R.H., Shaik, J.P., Ahamed, A., Mahmood, A., Khan, M. and Adil, S.F. (2018), "Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities", Sustainability, 10(4), art. ID 913.
  39. Sharma, V.K., Yngard, R.A. and Lin, Y. (2009), "Silver nanoparticles: Green synthesis and their antimicrobial activities", Adv. Colloid Interf. Sci., 145(1-2), 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  40. Sur, U.K. (2014), "Biological green synthesis of gold and silver nanoparticles", Adv. Nano Res., Int. J., 2(3), 135-145. https://doi.org/10.12989/anr.2014.2.3.135
  41. Syafiuddin, A., Salmiati, Salim, M.R., Kueh, A.B.H., Hadibarata, T. and Nur, H. (2017), "A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges", J. Chinese Chem. Soc., 64(7), 732-756. https://doi.org/10.1002/jccs.201700067
  42. Upadhyay, L.S.B. and Verma, N. (2015), "Recent Developments and Applications in Plant-Extract Mediated Synthesis of Silver Nanoparticles", Anal. Lett., 48(17), 2676-2692. https://doi.org/10.1080/00032719.2015.1048350
  43. Velgosova, O., Mrazikova, A. and Marcincakova, R. (2016), "Influence of pH on green synthesis of Ag nanoparticles", Mater. Lett., 180, 336-339. https://doi.org/10.1016/j.matlet.2016.04.045
  44. Wu, K.J., Ju, T., Deng, Y. and Xi, J. (2017), "Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology", Trends Food Sci. Technol., 66, 166-175. https://doi.org/10.1016/j.tifs.2017.06.011

피인용 문헌

  1. Biomechanochemical Solid-State Synthesis of Silver Nanoparticles with Antibacterial Activity Using Lichens vol.8, pp.37, 2019, https://doi.org/10.1021/acssuschemeng.0c03211
  2. Sustainable One-Step Solid-State Synthesis of Antibacterially Active Silver Nanoparticles Using Mechanochemistry vol.10, pp.11, 2019, https://doi.org/10.3390/nano10112119
  3. Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.077
  4. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy vol.11, pp.4, 2021, https://doi.org/10.3390/nano11041005
  5. Mechanochemistry as an Alternative Method of Green Synthesis of Silver Nanoparticles with Antibacterial Activity: A Comparative Study vol.11, pp.5, 2019, https://doi.org/10.3390/nano11051139