Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, 1st Edition, CRC Press.
- Areias, P., Rabczuk, T. and De Sa, J.C. (2016), "A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement", Comput. Mech., 58(6), 1003-1018. https://doi.org/10.1007/s00466-016-1328-5.
- ASTM (1965), "Fracture toughness testing and its applications", ASTM Spec. Tech. Pub., 381, 43-51.
- Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10(1), 25-37. https://doi.org/10.1002/nme.1620100103.
- Belytschko, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995), "Element-free Galerkin methods for static and dynamic fracture", Int. J. Sol. Struct., 32(17-18), 2547-2570. https://doi.org/10.1016/0020-7683(94)00282-2.
- Braun, J. and Sambridge, M. (1995), "A numerical method for solving partial differential equations on highly irregular evolving grids", Nat., 376(6542), 655-660. https://doi.org/10.1038/376655a0.
- Cao, Z. and Liu, Y. (2012), "A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis", Struct. Eng. Mech., 43(3), 321-336. https://doi.org/10.12989/sem.2012.43.3.321.
- Chinesta, F., Cescotto, S., Cueto, E. and Lorong, P. (2011), Natural Element Method for the Simulation of Structures and Processes, John Wiley & Sons, New Jersey, U.S.A.
- Ching, H.K. and Batra, R.C. (2011), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 2(2), 273-289.
- Cho, J.R. and Lee, H.W. (2006), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Technol., 20(1), 94-109. https://doi.org/10.1007/BF02916204.
- Cho, J.R. and Lee, H.W. (2014), "Calculation of stress intensity factors in 2-D linear fracture mechanics by Petrov-Galerkin natural element method", Int. J. Numer. Meth. Eng., 98(11), 819-839. https://doi.org/10.1002/nme.4666.
- Cho, J.R. (2016), "Stress recovery techniques for natural element method in 2-D solid mechanics", J. Mech. Sci. Technol., 30(11), 5083-5091. https://doi.org/10.1007/s12206-016-1026-4.
- Daimon, R. and Okada, H. (2014), "Mixed-mode stress intensity factor evaluation by interaction integral method for quadratic tetrahedral finite element with correction terms", Eng. Fract. Mech., 115, 22-42. https://doi.org/10.1016/j.engfracmech.2013.11.009.
- Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", ASME J. Appl. Mech., 64(3), 449-456. https://10.1115/1.2788914.
- Ergun, M. and Ates, S. (2015), "The stress analysis of a shear wall with matrix displacement method", Struct. Eng. Mech., 53(2), 205-226. https://doi.org/10.12989/sem.2015.53.2.205.
- Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40(8), 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6.
- Goli, E., Bayesteh, H. and Mohammadi, S. (2014), "Mixed mode fracture analysis of adiabatic cracks in homogeneous and nonhomogeneous materials in the framework of partition of unity and the path-independent interaction integral", Eng. Fract. Mech., 131, 100-127. https://doi.org/10.1016/j.engfracmech.2014.07.013.
- Hou, C., Wang, Z., Liang, W., Yu, H. and Wang, Z. (2017), "Investigation of the effects of confining pressure on SIFs and T-stress for CCBD specimens using the XFEM and the interaction integral method", Eng. Fract. Mech., 178, 279-300. https://doi.org/10.1016/j.engfracmech.2017.03.049.
- Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traveling a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547
- Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364.
- Lo, S.H. and Lee, C.K. (1992), "Solving crack problems by an adaptive refinement procedure", Eng. Fract. Mech., 43(2), 147-163. https://doi.org/10.1016/0013-7944(92)90118-X.
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
- Pant, M., Singh, I.V. and Mishra, B.K. (2011), "A novel enrichment criterion for modeling kinked cracks using element free Galerkin method", Int. J. Mech. Sci., 68, 140-149. https://doi.org/10.1016/j.ijmecsci.2013.01.008.
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
- Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26(4), 398-408. https://doi.org/10.1007/s004660000189.
- Shi, J., Ma, W. and Li, N. (2013), "Extended meshless method based on partition of unity for solving multiple crack problems", Meccan., 43(9), 2263-2270. https://doi.org/10.1007/s11012-013-9743-6.
- Shih, C.F. and Asaro, R.J. (1998), "Elasto-plastic analysis of cracks on biomaterial interfaces: Part I-small scale yielding", J. Appl. Mech., 55, 299-316. https://doi.org/10.1115/1.3173676
- Solanki, S., Daniewicz, S.R. and Newman Jr, J.C. (2003), "Finite element modeling of placiticity-induced crack closure with emphasis on geometry and mesh refinement effects", Eng. Fract. Mech., 70(12), 1475-1489. https://doi.org/10.1016/S0013-7944(02)00168-6.
- Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43(5), 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.
-
Sukumar, N. and Moran, A. (1999), "
$C^{1}$ natural neighbor interpolant for partial differential equations", Numer. Meth. Part. Diff. Eqs., 15(4), 417-447. https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<417::AID-NUM2>3.0.CO;2-S. - Szabo, B. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons, New York, U.S.A.
- Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7(3), 297-308. https://doi.org/10.1002/nme.1620070307.
- Tracey, D.M. (1971), "Finite elements for determination of crack tip elastic stress intensity factors", Eng. Fract. Mech., 3(3), 255-265. https://doi.org/10.1016/0013-7944(71)90036-1.
- Xiao, Q.Z., Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Int. J. Fract., 125(3-4), 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13.