참고문헌
- Akgoz, B. and Civalek, O . (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155.
- Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Asghari, M., Kahrobaiyan, M. and Ahmadian, M. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
- Aziz, A.K. (1975), Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations.
- Baltacioglu, A., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation", Compos. Part B: Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Bock, H.G. (1983), Recent Advances in Parameteridentification Techniques for O.D.E, Birkhauser Boston, Boston, MA, USA.
- Bock, H.G. and Plitt, K.-J. (1984), "A multiple shooting algorithm for direct solution of optimal control problems", IFAC Proceedings Volumes, 17(2), 1603-1608. https://doi.org/10.1016/S1474-6670(17)61205-9
- Chandrashekhar, M. and Ganguli, R. (2010), "Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties", Int. J. Mech. Sci., 52(7), 874-891. https://doi.org/10.1016/j.ijmecsci.2010.03.002
- Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548.
- Dai, H. and Wang, X. (2006), "Non-Linear dynamic response of a single wall carbon nanotube subjected to radial impulse", Arch. Appl. Mech., 76(3-4), 145-158. https://doi.org/10.1007/s00419-006-0011-2
- Damanpack, A. and Khalili, S. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94(5), 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
- Deuflhard, P. and Bader, G. (1983), Multiple Shooting Techniques Revisited, Birkhauser Boston, Boston, MA, USA.
- Duan, G., Wang, X. and Jin, C. (2014), "Free vibration analysis of circular thin plates with stepped thickness by the DSC element method", Thin-Wall. Struct., 85, 25-33. https://doi.org/10.1016/j.tws.2014.07.010
- Frostig, Y. and Baruch, M. (1994), "Free Vibrations Of Sandwich Beams With A Transversely Flexible Core: A High Order Approach", J. Sound Vib., 176(2), 195-208. https://doi.org/10.1006/jsvi.1994.1368
- Frostig, Y. and Thomsen, O.T. (2009), "On the free vibration of sandwich panels with a transversely flexible and temperaturedependent core material-Part I: Mathematical formulation", Compos. Sci. Technol., 69(6), 856-862. https://doi.org/10.1016/j.compscitech.2008.03.003
- Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
- Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184(Supplement C), 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066
- Gurses, M., Civalek, O ., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Methods Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9
- He, X., Rafiee, M. and Mareishi, S. (2015), "Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance", Nonlinear Dyn., 79(3), 1863-1880. https://doi.org/10.1007/s11071-014-1780-8
- Heshmati, M., Yas, M.H. and Daneshmand, F. (2015), "A comprehensive study on the vibrational behavior of CNTreinforced composite beams", Compos. Struct., 125(Supplement C), 434-448. https://doi.org/10.1016/j.compstruct.2015.02.033
- Jensen, A.E. and Irgens, F. (1999), "Thickness vibrations of sandwich plates and beams and delamination detection", J. Intel. Mater Syst. Struct., 10(1), 46-55. https://doi.org/10.1177/1045389X9901000106
- Kahrobaiyan, M., Asghari, M., Rahaeifard, M. and Ahmadian, M. (2011), "A nonlinear strain gradient beam formulation", Int. J.of Eng. Sci., 49(11), 1256-1267. https://doi.org/10.1016/j.ijengsci.2011.01.006
- Kar, V.R. and Panda, S.K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
- Kavalur, P., Jeyaraj, P. and Babu, G.R. (2014), "Static behaviour of visco-elastic sandwich plate with nano-composite facings under mechanical load", Procedia Mater. Sci., 5, 1376-1384. https://doi.org/10.1016/j.mspro.2014.07.455
- Khalili, S., Dehkordi, M.B., Carrera, E. and Shariyat, M. (2013), "Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory", Compos. Struct., 96, 243-255. https://doi.org/10.1016/j.compstruct.2012.08.020
- Li, S.-R. and Zhou, Y.-H. (2001), "Shooting method for non-linear vibration and thermal buckling of heated orthotropic circular plates", J. Sound Vib., 248(2), 379-386. https://doi.org/10.1006/jsvi.2001.3665
- Lin, C.-C. and Tseng, C.-S. (1998), "Free vibration of polar orthotropic laminated circular and annular plates", J. Sound Vib., 209(5), 797-810. https://doi.org/10.1006/jsvi.1997.1293
- Lin, F. and Xiang, Y. (2014), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stabil. Dyn., 14(01), 1350056. https://doi.org/10.1142/S0219455413500569
- Loos, M.R. and Manas-Zloczower, I. (2012), "Reinforcement efficiency of carbon nanotubes-myth and reality", Macromol. Theory Simulat., 21(2), 130-137. https://doi.org/10.1002/mats.201100099
- Lubin, G. (2013), Handbook of Composites, Springer Science & Business Media.
- Marshall, I., Rhodes, J. and Banks, W. (1977), "Experimental snap-buckling behaviour of thin GRP curved panels under lateral loading", Composites, 8(2), 81-86. https://doi.org/10.1016/0010-4361(77)90063-5
- Marzulli, P. and Gheri, G. (1989), "Estimation of the global discretization error in shooting methods for linear boundary value problems", J. Computat. Appl. Math., 28, 309-314. https://doi.org/10.1016/0377-0427(89)90342-7
- McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Naghipour, M. and Mehrzadi, M. (2007), "Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP", Steel Compos. Struct., Int. J., 7(6), 457-468. https://doi.org/10.12989/scs.2007.7.6.457
- Nguyen, T.-K., Nguyen, T.T.-P., Vo, T.P. and Thai, H.-T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032
- Rahmani, O., Khalili, S., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007
- Saidi, A., Baferani, A.H. and Jomehzadeh, E. (2011), "Benchmark solution for free vibration of functionally graded moderately thick annular sector plates", Acta Mechanica, 219(3-4), 309-335. https://doi.org/10.1007/s00707-011-0459-1
- Sankar, A., Natarajan, S., Haboussi, M., Ramajeyathilagam, K. and Ganapathi, M. (2014), "Panel flutter characteristics of sandwich plates with CNT reinforced facesheets using an accurate higher-order theory", J. Fluids Struct., 50, 376-391. https://doi.org/10.1016/j.jfluidstructs.2014.06.028
- Shen, H.-S. and Zhu, Z. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", Eur. J. Mech.-A/Solids, 35, 10-21. https://doi.org/10.1016/j.euromechsol.2012.01.005
- Sokolinsky, V.S., Nutt, S.R. and Frostig, Y. (2002), "Boundary condition effects in free vibrations of higher-order soft sandwich beams", AIAA J., 40(6), 1220-1227. https://doi.org/10.2514/2.1774
- Szekrenyes, A. (2014), "Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory", Appl. Math. Model., 38(15-16), 3897-3916. https://doi.org/10.1016/j.apm.2013.11.064
- Tagrara, S., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct., Int. J., 25(3), 347-360.
- Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solids Struct., 31(4), 443-456. https://doi.org/10.1016/0020-7683(94)90085-X
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Publishing Co. Inc., Lancaster, UK.
- Viswanathan, K., Kim, K.S. and Lee, J.H. (2009), "Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia: spline method", Forschung im Ingenieurwesen, 73(4), 205-217. https://doi.org/10.1007/s10010-009-0106-3
- Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011
- Wang, Z.-X. and Shen, H.-S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wang, Y.-G., Lin, W.-H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory", Int. J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008
- Wang, Q., Shi, D., Liang, Q. and Ahad, F. (2016), "An improved Fourier series solution for the dynamic analysis of laminated composite annular, circular, and sector plate with general boundary conditions", J. Compos. Mater., 50(30), 4199-4233. https://doi.org/10.1177/0021998316635240
- Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
- Xie, W. and Pang, H. (2016), "The shooting method and integral boundary value problems of third-order differential equation", Adv. Differ. Eq., 2016(1), 138. https://doi.org/10.1186/s13662-016-0824-4
- Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoustics, 85, 130-142. https://doi.org/10.1016/j.apacoust.2014.04.006
- Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117(Supplement C), 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016
- Zhang, L., Lei, Z. and Liew, K. (2015), "Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method", Appl. Math. Computat., 256, 488-504. https://doi.org/10.1016/j.amc.2015.01.066