Acknowledgement
Supported by : Vietnam National University, Hanoi (VNU)
References
- Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta. Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3
- Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
- Chan, D.Q., Dung, D.V. and Hoa, L.K. (2018), "Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT", Acta. Mech. 229(5), 2221-2249. https://doi.org/10.1007/s00707-017-2090-2
- Duc, N.D. and Cong, P.H. (2015), "Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations", Euro. J. Mech. A Solids., 50, 120-131. https://doi.org/10.1016/j.euromechsol.2014.11.006
- Duc, N.D. and Nguyen, P.D. (2017), "The dynamic response and vibration of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundation", Materials, 10(10), 1194. https://doi.org/10.3390/ma10101194
- Duc, N.D., Cong, P.H., Tuan, N.D., Phuong, T. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT) reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016
- Duc, N.D., Kim, S.E. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress, 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623
- Dung, D.V., Hoai, B.T.T. and Hoa, L.K. (2017), "Postbuckling nonlinear analysis of FGM truncated conical shells reinforced by orthogonal stiffeners resting on elastic foundations", Acta Mech., 228(4), 1457-1479. https://doi.org/10.1007/s00707-016-1768-1
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
- Hu, H.T. and Chen, H.C. (2018), "Buckling optimization of laminated truncated conical shells subjected to external hydrostatic compression", Compos. Part B Eng., 135, 95-109. https://doi.org/10.1016/j.compositesb.2017.09.065
- Jam, J.E. and Kiani, Y. (2016), "Buckling of pressurized functionally graded carbon nanotube reinforced conical shells", Compos. Struct., 125, 586-595. https://doi.org/10.1016/j.compstruct.2015.02.052
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of CNTRC conical shells based on first-order shear deformation theory", Int. J. Mech. Sci., 108-109, 157-165. https://doi.org/10.1016/j.ijmecsci.2016.02.006
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Comp. Struct., Int. J., 23(1), 1-6. https://doi.org/10.12989/scs.2017.23.1.001
- Mehri, M., Asadi, H. and Wang, Q. (2016a), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Methods. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
- Mehri, M., Asadi, H. and Wang, Q. (2016b), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009
- Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011
- Morozov, E.V., Lopatin, A.V. and Nesterov, V.A. (2011), "Buckling analysis and design of anisogrid composite lattice conical shells", Compos. Struct., 93(12), 3150-3162. https://doi.org/10.1016/j.compstruct.2011.06.015
- Naj, R., Boroujerdy, M.S. and Eslami, M.R. (2008), "Thermal and mechanical instability of functionally graded truncated conical shells", Thin-Wall. Struct., 46, 65-78. https://doi.org/10.1016/j.tws.2007.07.011
- Najafov, A.M. and Sofiyev, A.H. (2013), "The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium", Int. J. Mechan. Sci., 66, 33-44. https://doi.org/10.1016/j.ijmecsci.2012.10.006
- Seidi, J., Khalili, S.M.R. and Malekzadeh, K. (2015), "Temperature-dependent buckling analysis of sandwich conical shell with thin functionally graded facesheets", Compos. Struct., 131, 682-691. https://doi.org/10.1016/j.compstruct.2015.04.068
- Shadmehri, F., Hoa, V.S. and Hojjati, M. (2012), "Buckling of conical composite shells", Compos. Struct., 94, 787-792. https://doi.org/10.1016/j.compstruct.2011.09.016
- Sharghi, H., Shakouri, M. and Kouchakzadeh, M.A. (2016), "An analytical approach for buckling analysis of generally laminated conical shells under axial compression", Acta Mech., 227(4), 1181-1198. https://doi.org/10.1007/s00707-015-1549-2
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Sofiyev, A.H. (2010), "The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler-Pasternak foundations", Int. J. Press. Vesels Pip., 87, 753-761. https://doi.org/10.1016/j.ijpvp.2010.08.012
- Sofiyev, A.H. (2011), "Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells", Int. J. Mech. Sci., 53(9), 753-761. https://doi.org/10.1016/j.ijmecsci.2011.06.007
- Sofiyev, A.H. (2013), "On the vibration and stability of shear deformable FGM truncated conical shells subjected to an axial load", Compos. Part B Eng., 80, 53-62. https://doi.org/10.1016/j.compositesb.2015.05.032
- Sofiyev, A.H. and Kuruoglu, N. (2013), "Buckling analysis of nonhomogeneous orthotropic thin-walled truncated conical shells in large deformation", Thin-Wall. Struct., 62, 131-141. https://doi.org/10.1016/j.tws.2012.08.002
- Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of nonhomogeneous orthotropic conical shells subjected to combined load", 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
- Sofiyev, A.H. and Kuruoglu, N. (2016), "The stability of FGM truncated conical shells under combined axial and external mechanical loads in the framework of the shear deformation theory", Compos. Part B Eng., 92, 463-476. https://doi.org/10.1016/j.compositesb.2016.02.027
- Sofiyev, A.H. and Schnack, E. (2003), "The buckling of cross-ply laminated non-homogeneous orthotropic composite conical thin shells under a dynamic external pressure", Acta Mech., 162(1-4), 29-40. https://doi.org/10.1007/s00707-002-1001-2
- Sofiyev, A.H., Zerin, Z., Allahverdiev P.B., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., Int. J., 25(5), 581-591.
- Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., Int. J., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
- Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B Eng., 50, 265-272. https://doi.org/10.1016/j.compositesb.2013.02.025
- Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2014), "Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery", Compos. Struct., 112, 44-65. https://doi.org/10.1016/j.compstruct.2014.01.039
- Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., Int. J., 13(2), 157-169. https://doi.org/10.12989/scs.2012.13.2.157
Cited by
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.183