DOI QR코드

DOI QR Code

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin (School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Zhang, Zhousuo (School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Guo, Yanfei (School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Gong, Teng (School of Mechanical Engineering, Xi'an Jiaotong University)
  • Received : 2018.05.05
  • Accepted : 2019.04.10
  • Published : 2019.05.10

Abstract

Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Acarer, M. and Demir, B. (2008), "An investigation of mechanical and metallurgical properties of explosive welded aluminumdual phase steel", Mater. Lett., 62(25), 4158-4160. https://doi.org/10.1016/j.matlet.2008.05.060
  2. Arani, A.G. and Amir, S. (2014), "Flow-induced vibration of double visco-CNTs under magnetic fields considering surface effect", Comp. Mater. Sci., 86(86), 144-154. https://doi.org/10.1016/j.commatsci.2014.01.047
  3. Bashmal, S., Bhat, R. and Rakheja, S. (2009), "In-plane free vibration of circular annular disks", J. Sound Vib., 322(1), 216-226. https://doi.org/10.1016/j.jsv.2008.11.024
  4. Chen, S., Daehn, G.S., Vivek, A., Liu, B., Hansen, S.R., Huang, J.H. and Lin, S.B. (2016), "Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel", Mat. Sci. Eng. A, 659, 12-21. https://doi.org/10.1016/j.msea.2016.02.040
  5. El-Gebeily, M. and Khulief, Y.A. (2016), "Identification of wallthinning and cracks in pipes utilizing vibration modes and wavelets", Appl. Math. Model, 40(9-10), 5335-5348. https://doi.org/10.1016/j.apm.2015.12.031
  6. Emam, S.A. (2018), "Snapthrough and free vibration of bistable composite laminates using a simplified Rayleigh-Ritz model", Compos. Struct., 206, 403-414. https://doi.org/10.1016/j.compstruct.2018.08.035
  7. Findik, F. (2011), "Recent developments in explosive welding", Mater. Des., 32(3), 1081-1093. https://doi.org/10.1016/j.matdes.2010.10.017
  8. Gao, Y., Muggleton, J.M., Liu, Y. and Rustighi, E. (2017), "An analytical model of ground surface vibration due to axisymmetric wave motion in buried fluid-filled pipes", J. Sound Vib., 395, 346-366.
  9. Guo, X., Tao, J., Yuan, Z., Zhang, L. and Sun, X. (2012), "Interface and properties of explosive welded TA1/Al clad tube", Rare Metal Mat. Eng., 41(1), 139-142. https://doi.org/10.3969/j.issn.1002-185X.2012.01.031
  10. Guo, X., Fan, M., Wang, L. and Ma, F. (2016a), "Bonding interface and bending deformation of al/316lss clad metal prepared by explosive welding", J. Mater. Eng. Perform., 25(6), 2157-2163. https://doi.org/10.1007/s11665-016-2057-9
  11. Guo, X., Wang, H., Liu, Z. Wang, L. Ma, F. and Tao, J. (2016b), "Interface and performance of CLAM steel/aluminum clad tube prepared by explosive bonding method", Int. J. Adv. Manuf. Tech., 82(1-4), 543-548. https://doi.org/10.1007/s00170-015-7380-z
  12. Jeong, S. and Yoo, H.H. (2019), "Nonlinear structural analysis of a flexible multibody system using the classical Rayleigh-Ritz method", Int. J. Nonlin. Mech., 110, 69-80. https://doi.org/10.1016/j.ijnonlinmec.2019.01.011
  13. Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A-Solid, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005
  14. Kaya, Y. and Kahraman, N. (2013), "An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel", Mater. Des., 52(24), 367-372. https://doi.org/10.1016/j.matdes.2013.05.033
  15. Li, J. and Hua, H. (2007), "Spectral finite element analysis of elastically connected double-beam systems", Finite Elem. Anal. Des., 43(15), 1155-1168. https://doi.org/10.1016/j.finel.2007.08.007
  16. Mao, Q. (2012), "Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method", J. Sound Vib., 331(11), 2532-2542. https://doi.org/10.1016/j.jsv.2012.01.028
  17. Mendes, R., Ribeiro, J.B. and Loureiro, A. (2013), "Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration", Mater. Des., 51(51), 182-192. https://doi.org/10.1016/j.matdes.2013.03.069
  18. Mouritz, A.P., Townsend, C. and Shah-Khan, M.Z. (2000), "Nondestructive detection of fatigue damage in thick composites by pulse-echo ultrasonics", Compos. Sci. Technol., 60(1), 23-32. https://doi.org/10.1016/S0266-3538(99)00094-9
  19. Oniszczuk, Z. (2000), "Free transverse vibrations of elastically connected simply supported double-beam system", J. Sound Vib., 232(2), 387-403. https://doi.org/10.1006/jsvi.1999.2744
  20. Oniszczuk, Z. (2003), "Forced transverse vibrations of an elastically connected complex simply supported double-beam system", J. Sound Vib., 264(2), 273-286. https://doi.org/10.1016/S0022-460X(02)01166-5
  21. Pellicano, F. (2007), "Vibration of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
  22. Shen, H., Wen, J., Yu, D. and Wen, X. (2009), "The vibrational properties of a periodic composite pipe in 3D space", J. Sound Vib., 328(1-2), 57-70. https://doi.org/10.1016/j.jsv.2009.07.032
  23. Si, Y., Zhang, Z., Cheng, W. and Yuan, F. (2015), "State Detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy", Steel Compos. Struct., Int. J., 19(3), 569-583. https://doi.org/10.12989/scs.2015.19.3.569
  24. Si, Y., Zhang, Z., Wang, H. and Yuan, F. (2017), "Feasibility study of bonding state detection of explosive composite structure based on nonlinear output frequency response functions", Steel Compos. Struct., Int. J., 24(4), 391-397.
  25. Sun, X.J., Tao, J. and Guo, X.Z. (2011), "Bonding properties of interface in Fe/Al clad tube prepared by explosive welding", T. Nonferr. Metal. Soc., 21(10), 2175-2180. https://doi.org/10.1016/S1003-6326(11)60991-6
  26. Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229(4), 807-822. https://doi.org/10.1006/jsvi.1999.2528
  27. Xia, H., Wang, S. and Ben, H. (2014), "Microstructure and mechanical properties of Ti/Al explosive cladding", Mater. Des., 56(4), 1014-1019. https://doi.org/10.1016/j.matdes.2013.12.012

Cited by

  1. Mechanical bonding in cold roll-cladding of tri-layered brass/steel/brass composite vol.111, pp.10, 2019, https://doi.org/10.3139/146.111951