Abstract
Pipes are widely used in various industries such as automobile, anti-vibration devices, factories and ship building. Chamfering is one of the most critical processes in pipe manufacturing which removes burrs of the pipes for better surface quality. In most cases, the defects of the chamfered surface are originated from the structural vibrations of the chamfering machine. In this study, the dynamic characteristics of a chamfering machine have been analyzed though the experiment and the computer simulation. And the effects of the design parameters affecting the stability of the machine have been investigated to stabilize the machine structure and further to reduce structural vibrations. The result shows that design alterations to stabilize the machine can suppress the defects of the machined surface as well as the vibrations during chamfering.