DOI QR코드

DOI QR Code

Previous Infection with Plasmodium berghei Confers Resistance to Toxoplasma gondii Infection in Mice

  • Lee, Dong-Hun (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Chu, Ki-Back (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Kang, Hae-Ji (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Lee, Su-Hwa (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Quan, Fu-Shi (Department of Medical Zoology, Kyung Hee University School of Medicine)
  • Received : 2019.02.10
  • Accepted : 2019.03.25
  • Published : 2019.04.30

Abstract

Both Plasmodium spp. and Toxoplasma gondii are important apicomplexan parasites, which infect humans worldwide. Genetic analyses have revealed that 33% of amino acid sequences of inner membrane complex from the malaria parasite Plasmodium berghei is similar to that of Toxoplasma gondii. Inner membrane complex is known to be involved in cell invasion and replication. In this study, we investigated the resistance against T. gondii (ME49) infection induced by previously infected P. berghei (ANKA) in mice. Levels of T. gondii-specific IgG, IgG1, IgG2a, and IgG2b antibody responses, $CD4^+$ and $CD8^+$ T cell populations were found higher in the mice infected with P. berghei (ANKA) and challenged with T. gondii (ME49) compared to that in control mice infected with T. gondii alone (ME49). P. berghei (ANKA) + T. gondii (ME49) group showed significantly reduced the number and size of T. gondii (ME49) cysts in the brains of mice, resulting in lower body weight loss compared to ME49 control group. These results indicate that previous exposure to P. berghei (ANKA) induce resistance to subsequent T. gondii (ME49) infection.

Keywords

References

  1. World Health Organization. Water-related Diseases: Malaria [Internet]; [Retrieved 5 Dec 2018]. Available from: https://www.who.int/water_sanitation_health/diseases-risks/diseases/malaria/en/.
  2. Mueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. Vaccine 2015; 33: 7489-7495. https://doi.org/10.1016/j.vaccine.2015.09.060
  3. Lee DH, Kim AR, Lee SH, Quan FS. Cross-protection induced by Toxoplasma gondii virus-like particle vaccine upon intraperitoneal route challenge. Acta Trop 2016; 164: 77-83. https://doi.org/10.1016/j.actatropica.2016.08.025
  4. Lee SH, Kim AR, Lee DH, Rubino I, Choi HJ, Quan FS. Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 2017; 12: e0175644. https://doi.org/10.1371/journal.pone.0175644
  5. Kono M, Herrmann S, Loughran NB, Cabrera A, Engelberg K, Lehmann C, Sinha D, Prinz B, Ruch U, Heussler V. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol Biol Evol 2012; 29: 2113-2132. https://doi.org/10.1093/molbev/mss081
  6. Ouologuem DT, Roos DS. Dynamics of the Toxoplasma gondii inner membrane complex. J Cell Sci 2014; 127: 3320-3330. https://doi.org/10.1242/jcs.147736
  7. Lee DH, Lee SH, Kim AR, Quan FS. Virus-like nanoparticle vaccine confers protection against Toxoplasma gondii. PLoS One 2016; 11: e0161231. https://doi.org/10.1371/journal.pone.0161231
  8. Parkyn Schneider M, Liu B, Glock P, Suttie A, McHugh E, Andrew D, Batinovic S, Williamson N, Hanssen E, McMillan P, Hliscs M, Tilley L, Dixon MWA. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLoS Pathog 2017; 13: e1006659. https://doi.org/10.1371/journal.ppat.1006659
  9. Harding CR, Meissner M. The inner membrane complex through development of Toxoplasma gondii and Plasmodium. Cell Microbiol 2014; 16: 632-641. https://doi.org/10.1111/cmi.12285
  10. Butler NS, Harris TH, Blader IJ. Regulation of immunopathogenesis during Plasmodium and Toxoplasma infections: more parallels than distinctions? Trends Parasitol 2013; 29: 593-602. https://doi.org/10.1016/j.pt.2013.10.002
  11. Onkoba NW, Chimbari MJ, Mukaratirwa S. Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review. Infect Dis Poverty 2015; 4: 35. https://doi.org/10.1186/s40249-015-0070-0
  12. Mengs U, Pelster B. The course of Plasmodium berghei infection in mice latently infected with Toxoplasma gondii. Experientia 1982; 38: 570-571. https://doi.org/10.1007/BF02327054
  13. Kang HJ, Lee SH, Chu KB, Lee DH, Quan FS. Virus-like particles expressing Toxoplasma gondii rhoptry protein 18 induces better protection than rhoptry protein 4 against T. gondii infection. Korean J Parasitol 2018; 56: 429-435. https://doi.org/10.3347/kjp.2018.56.5.429
  14. Fairlie-Clarke KJ, Lamb TJ, Langhorne J, Graham AL, Allen JE. Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity. BMC Immunol 2010; 11: 6. https://doi.org/10.1186/1471-2172-11-6
  15. Cao Y, Zhang D, Pan W. Construction of transgenic Plasmodium berghei as a model for evaluation of blood-stage vaccine candidate of Plasmodium falciparum chimeric protein 2.9. PLoS One 2009; 4: e6894. https://doi.org/10.1371/journal.pone.0006894
  16. Somsak V, Srichairatanakool S, Yuthavong Y, Kamchonwongpaisan S, Uthaipibull C. Flow cytometric enumeration of Plasmodium berghei-infected red blood cells stained with SYBR Green I Acta Trop 2012; 122: 113-118. https://doi.org/10.1016/j.actatropica.2011.12.010
  17. Susanto L, Muljono R. Preparation of Toxoplasma gondii RH strain antigen, antigen analysis and antigen detection in sera: a review. Southeast Asian J Trop Med Public Health 2001; 32: 195-201.
  18. Lee SH, Lee DH, Piao Y, Moon EK, Quan FS. Influenza M1 virus-like particles consisting of Toxoplasma gondii rhoptry protein 4. Korean J Parasitol 2017; 55: 143-148. https://doi.org/10.3347/kjp.2017.55.2.143
  19. Chu KB, Lee DH, Kang HJ, Quan FS. The resistance against Trichinella spiralis infection induced by primary infection with respiratory syncytial virus. Parasitology 2019; 146: 634-642. https://doi.org/10.1017/S0031182018001889
  20. Rifaat MA, Salem SA, Azab ME, el-Razik IA, Safer EH, Beshir SR, el-Shennawy SF. Experimental concomitant toxoplasma and malaria infection in rats. Folia Parasitol 1984; 31: 97-104.
  21. Omata Y, Nakabayashi T, Suzuki N. Different appearance of parasitized erythrocytes in blood between normal and toxoplasma-infected rats after infection of Plasmodium berghei. Zentralbl Bakteriol Orig A 1979; 244: 362-373.
  22. White WI, Evans CB, Taylor DW. Antimalarial antibodies of the immunoglobulin G2a isotype modulate parasitemias in mice infected with Plasmodium yoelii. Infect Immun 1991; 59: 3547-3554. https://doi.org/10.1128/IAI.59.10.3547-3554.1991
  23. Ahmed N, French T, Rausch S, Kuhl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response. Front Cell Infect Microbiol 2017; 7: 341. https://doi.org/10.3389/fcimb.2017.00341
  24. Chew WK, Segarra I, Ambu S, Mak JW. Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 2012; 56: 1762-1768. https://doi.org/10.1128/AAC.05183-11
  25. Charest H, Sedegah M, Yap GS, Gazzinelli RT, Caspar P, Hoffman SL, Sher A. Recombinant attenuated Toxoplasma gondii expressing the Plasmodium yoelii circumsporozoite protein provides highly effective priming for CD8+ T cell-dependent protective immunity against malaria. J Immunol 2000; 165: 2084-2092. https://doi.org/10.4049/jimmunol.165.4.2084
  26. Ademola IO, Odeniran PO. Co-infection with Plasmodium berghei and Trypanosoma brucei increases severity of malaria and trypanosomiasis in mice. Acta Trop 2016; 159: 29-35. https://doi.org/10.1016/j.actatropica.2016.03.030
  27. Santiago HC, Oliveira MA, Bambirra EA, Faria AM, Afonso LC, Vieira LQ, Gazzinelli RT. Coinfection with Toxoplasma gondii inhibits antigen-specific Th2 immune responses, tissue inflammation, and parasitism in BALB/c mice infected with Leishmania major. Infect Immun 1999; 67: 4939-4944. https://doi.org/10.1128/IAI.67.9.4939-4944.1999