References
- W. Guo, M. Schorer, Development of high temperature gas cooled reactor in China, ATW-Int. J. Nucl. Power 63 (2) (2018) 81.
- Z. Jiao, S. Taller, K. Field, G. Yeli, M.P. Moody, G.S. Was, Microstructure evolution of T91 irradiated in the BOR60 fast reactor, J. Nucl. Mater. 504 (2018) 122-134. https://doi.org/10.1016/j.jnucmat.2018.03.024
- Q. Sahi, Y. Kim, Primary radiation damage characterization of alpha-iron under irradiation temperature for various PKA energies, Mater. Res. Express 5 (4) (2018).
- T. Zhang, H. Schut, Z. Li, H. Wang, Z. Zhang, M. He, Positron annihilation and nano-indentation analysis of irradiation effects on the microstructure and hardening of A508-3 steels used in Chinese HTGR, J. Nucl. Sci. Technol. 55 (4) (2018) 418-423. https://doi.org/10.1080/00223131.2017.1403385
- O. El-Atwani, E. Esquivel, M. Efe, E. Aydogan, Y.Q. Wang, E. Martinez, et al., Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: microstructure, effect of dpa rate, temperature, and grain size, Acta Mater. 149 (2018) 206-219. https://doi.org/10.1016/j.actamat.2018.02.035
- S. Taller, D. Woodley, E. Getto, A.M. Monterrosa, Z. Jiao, O. Toader, et al., Multiple ion beam irradiation for the study of radiation damage in materials, Nucl. Instrum. Methods B 412 (2017) 1-10. https://doi.org/10.1016/j.nimb.2017.08.035
- X. Liu, R. Wang, A. Ren, J. Jiang, C. Xu, P. Huang, et al., Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation, J. Nucl. Mater. 444 (1-3) (2014) 1-6. https://doi.org/10.1016/j.jnucmat.2013.09.026
- J.S. Weaver, S. Pathak, A. Reichardt, H.T. Vo, S.A. Maloy, P. Hosemann, et al., Spherical nanoindentation of proton irradiated 304 stainless steel: a comparison of small scale mechanical test techniques for measuring irradiation hardening, J. Nucl. Mater. 493 (2017) 368-379. https://doi.org/10.1016/j.jnucmat.2017.06.031
- N.N. Kumar, R. Tewari, P. Mukherjee, N. Gayathri, P.V. Durgaprasad, G.S. Taki, et al., Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques, Radiat. Eff. Defect Solid 172 (7-8) (2017) 678-694. https://doi.org/10.1080/10420150.2017.1379520
- X. Xiao, Q. Chen, H. Yang, H. Duan, J. Qu, A mechanistic model for depthdependent hardness of ion irradiated metals, J. Nucl. Mater. 485 (2017) 80-89. https://doi.org/10.1016/j.jnucmat.2016.12.039
- A. Kochendoerfer, Theory of crystal plasticity, Z Fur Phys 108 (1938) 244-264. https://doi.org/10.1007/BF01375099
- F.T. Meissornnier, E.P. Busso, N.P. O'Dowd, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, Int. J. Plast. 17 (2001) 601-640. https://doi.org/10.1016/S0749-6419(00)00064-4
- Junfeng Nie, Yunpeng Liu, Qihao Xie, et al., Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model, J. Nucl. Sci. Technol. 51 (2) (2019) 501-509.
- G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1928) 307-324.
- R.J. Asaro, Micro mechanics of crystals and polycrystals, Adv. Appl. Mech. 23 (8) (1983) 11-15.
- R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids 20 (6) (1972) 401-413. https://doi.org/10.1016/0022-5096(72)90017-8
- E. Orowan, Problems of plastic gliding, Proc. Phys. Soc. 52 (1940) 8. https://doi.org/10.1088/0959-5309/52/1/303
- E. Schmid, W. Boas, Plasticity of Crystals. Plasticity and Textures, Springer, Netherlands, 1950.
- M. Kothari, L. Anand, Elasto-viscoplastic constitutive equations for polycrystalline metals: application to Tantalum, J. Mech. Phys. Solids 46 (1) (1998) 51-83. https://doi.org/10.1016/S0022-5096(97)00037-9
- U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip, in: B. Chalmers, J.W. Christian, T.B. Massalski (Eds.), Progress in Materials Science, vol. 19, Pergamon Press, Oxford, 1975 p.1.
- G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc. Roy. Soc. Lond. 145 (855) (1934) 362-387.
- G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938).
- C. Deo, C. Tom, R. Lebensohn, S. Maloy, Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors, J. Nucl. Mater. 377 (1) (2008) 136-140. https://doi.org/10.1016/j.jnucmat.2008.02.064
- J. Nie, Z. Tang, H. Zhang, H. Li, X. Wang, Crystal plasticity constitutive model for BCC based on the dislocation density, Tsinghua Univ(Sci & Technol) 57 (2017) 780-784.
- Anirban Patra, David L. McDowell, Crystal plasticity-based constitutive modelling of irradiated bcc structures, Philos. Mag. A 92 (7) (2011) 861-887. https://doi.org/10.1080/14786435.2011.634855
- Hibbitt, Karlsson, and Sorensen, ABAQUS, Inc., Providence, RI, v6.5, 2005.
- H.E. Xikou, B. Tian, L. Zhengdong, L. Zhaojie, Effect of heating rate and cooling mode on austenite grain size of 508-3 steel, Hot Work. Technol. 42 (20) (2013) 204-205.
- A. Bolshakov, G.M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13 (4) (1998) 10.
- K.C. Tang, A. Faulkner, N. Schwarzer, et al., Comparison between an elasticperfectly plastic finite element model and a purely elastic analytical model for a spherical indenter on a layered substrate[J], Thin Solid Films 300 (1-2) (1997) 177-188. https://doi.org/10.1016/S0040-6090(96)09490-4
- Y. Wang, D. Raabe, C. Kluber, H. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater. 52 (8) (2004) 2229-2238. https://doi.org/10.1016/j.actamat.2004.01.016
- L. Zhang, Study on Mechanical Properties of Thin Film Nanomechanical Based on ABAQUS Simulation, Jiangsu university, Jiangsu, 2012.
- R.A. Johnson, D.J. Oh, Analytic embedded atom method model for BCC metals, J. Mater. Res. 4 (5) (1989) 1195-1201. https://doi.org/10.1557/JMR.1989.1195
- S.H. He, B.B. He, K.Y. Zhu, M.X. Huang, Evolution of dislocation density in bainitic steel: modeling and experiments, Acta Mater. 149 (2018) 46-56. https://doi.org/10.1016/j.actamat.2018.02.023
-
D. Brunner, J. Diehl, Strain-rate and temperature dependence of the tensile flow stress of high-purity
${\alpha}$ -Iron above 250 K (Regime I) studied by means of stress-relaxation tests, Physica Status Solidi Applied Research 124 (1) (1991) 155-170. https://doi.org/10.1002/pssa.2211240114 - W.A. Spitzig, A.S. Keh, The role of internal and effective stresses in the plastic flow of iron single crystals, Metall. Mater. Trans. B 1 (1970) 3325-3331.
- M. Kopernik, A. Milenin, R. Major, J.M. Lakner, Identification of material model of TiN using numerical simulation of nanoindentation test, Metal Science Journal 27 (3) (2011) 604-616.
- Jinsheng Pan, Jianmin Tong, Mibo Tian, Materials Science and Engineering, Tsinghua University Press, Beijing, 2010.
Cited by
- Study on displacement cascade and tensile simulation by molecular dynamics: Formation and properties of point defects vol.35, pp.10, 2019, https://doi.org/10.1142/s021797922150140x