참고문헌
- T. Nishimura, H. Hoshi, A. Hotta, Current research and development activities on fission products and hydrogen risk after the accident at Fukushima Daiichi Nuclear Power Station, Nucl. Eng. Technol. 47 (2015) 1-10. https://doi.org/10.1016/j.net.2014.12.002
- A. Bentaib, N. Meynet, A. Bleyer, Overview on hydrogen risk research and development activities: methodology and open issues, Nucl. Eng. Technol. 47 (2015) 26-32. https://doi.org/10.1016/j.net.2014.12.001
- K. Vierow, Y. Liao, J. Johnson, M. Kenton, R. Gauntt, Severe accident analysis of a PWR station blackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes, Nucl. Eng. Des. 234 (2004) 129-145. https://doi.org/10.1016/j.nucengdes.2004.09.001
- R.O. Gauntt, et al., MELCOR Computer Code Manuals Version 1.8.6, Sandia Natl. Lab., 2005. SAND 2005-5713.
- B.E. Boyack, et al., MELCOR Peer Review, Los Alamos Natl. Lab., 1992. LA-12240.
- N.K. Kim, J. Jeon, W. Choi, S.J. Kim, Systematic hydrogen risk analysis of OPR1000 containment before RPV failure under station blackout scenario, Ann. Nucl. Energy 116 (2018) 429-438. https://doi.org/10.1016/j.anucene.2018.02.050
- W. Choi, S.O. Yu, S.J. Kim, Efficacy analysis of hydrogen mitigation measures of CANDU containment under LOCA scenario, Ann. Nucl. Energy 118 (2018) 122-130. https://doi.org/10.1016/j.anucene.2018.04.008
- H.C. Kim, N.D. Suh, J.H. Park, Hydrogen behavior in the IRWST of APR1400 following a station blackout, Nucl. Eng. Technol. 38 (2006) 195-200.
- J. Wang, Y. Zhang, K. Mao, Y. Huang, W. Tian, et al., MELCOR simulation of core thermal response during a station blackout initiated severe accident in China pressurized reactor (CPR1000), Prog. Nucl. Energy 81 (2015) 6-15. https://doi.org/10.1016/j.pnucene.2014.12.008
- J.M. Martín-Valdepe-nas, M.A. Jimenez, F. Martin-Fuertes, J.A. Fernandez, Improvements in a CFD code for analysis of hydrogen behaviour within containments, Nucl. Eng. Des. 237 (2007) 627-647. https://doi.org/10.1016/j.nucengdes.2006.09.002
- C. Spengler, S. Arndt, S. Beck, J. Eckel, et al., Further Development of the Computer Codes COCOSYS and ASTEC, Gesellschaft fuer Anlagen-und Reaktorsicherheit mbH, GRS, 2014. GRS-358.
- RELAP4/MOD5, A Computer Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related Systems User's Manual, vol. 1, Idaho Nucl. Eng. Lab., 1976. ANCR-NUREG-1335.
- CCPS, Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995, 6-8 and 35.
- S. Sklavounos, F. Rigas, Validation of turbulence models in heavy gas dispersion over obstacles, J. Hazard Mater. 108 (2004) 9-20. https://doi.org/10.1016/j.jhazmat.2004.01.005
- ANSYS Academic Research, ANSYS CFX User Guide, Release 17.0, ANSYS, Inc, 2015.
- Korea Hydro, Nuclear Power Co, Shin Kori 1&2 Final Safety Analysis Report, Seoul, Korea, 2008.
- J. Jeon, W. Choi, N.K. Kim, S.J. Kim, Numerical investigation of in-vessel core coolability of PWR through an effective safety injection flow model using MELCOR simulation, Ann. Nucl. Energy 121 (2018) 350-360. https://doi.org/10.1016/j.anucene.2018.07.004
- J. Kim, S.W. Hong, S.B. Kim, H.D. Kim, 3-Dimensional analysis of the steamhydrogen behavior from a small break loss of coolant accident in the APR1400 containment, Nucl. Eng. Technol. 36 (2004) 24-35.
- A.M. Gomez-Torres, E. Sainz-Mejia, J.V. Xolocostli-Munguia, et al., CFD analysis of hydrogen volumetric concentrations in a hard venting containment system of MARK-2 BWR, Ann. Nucl. Energy 85 (2015) 552-565. https://doi.org/10.1016/j.anucene.2015.06.008
- T. Szabo, F. Kretzschmar, T. Schulenberg, Obtaining a more realistic hydrogen distribution in the containment by coupling MELCOR with GASFLOW, Nucl. Eng. Des. 269 (2014) 330-339. https://doi.org/10.1016/j.nucengdes.2013.07.009
- American National Standards Institute, Design Basis for Protection of Light Water Nuclear Power Plant against the Effects of Postulated Pipe Rupture, 1988. ANSI/ANS-58.2-1988.
- R.K. Kumar, Flammability limits of hydrogen-oxygen-diluent mixtures, J. Fire Sci. 3 (1985) 245-262. https://doi.org/10.1177/073490418500300402
- J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol., https://doi.org/10.1016/j.net.2019.05.005
- T. Aldemir, A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants, Ann. Nucl. Energy 52 (2013) 113-124. https://doi.org/10.1016/j.anucene.2012.08.001
- M. Heitsch, R. Huhtanen, Z. Tꠓechy, et al., CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment, Nucl. Eng. Des. 240 (2010) 385-396. https://doi.org/10.1016/j.nucengdes.2008.07.022
- B.W. Marshall, Hydrogen:Air:Steam Flammability Limits and Combustion Characteristics in the FITS Vessel, Report No. SAND84-0383, Sandia National Lab., 1986.
- J. Kim, S.W. Hong, Analysis of hydrogen flame acceleration in APR1400 containment by coupling hydrogen distribution and combustion analysis codes, Prog. Nucl. Energy 78 (2015) 101-109. https://doi.org/10.1016/j.pnucene.2014.09.003
피인용 문헌
- Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems vol.13, pp.23, 2020, https://doi.org/10.3390/en13236263
- Thermal hydraulic modelling of grating effect for application to 3-dimensional analysis of hydrogen behavior in NPP containment vol.380, 2021, https://doi.org/10.1016/j.nucengdes.2021.111291