References
- B.H. Yan, Review of the nuclear reactor thermal hydraulic research in ocean motions, Nucl. Eng. Des. 313 (2017) 370-385, https://doi.org/10.1016/j.nucengdes.2016.12.041.
- I. Ishida, T. Kusunoki, H. Murata, T. Yokomura, M. Kobayashi, H. Nariai, Thermal-hydraulic behavior of a marine reactor during oscillations, Nucl. Eng. Des. 120 (1990) 213-225, https://doi.org/10.1016/0029-5493(90)90374-7.
- S. chao Tan, G.H. Su, P. zhen Gao, Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition, Appl. Therm. Eng. 29 (2009) 3160-3168, https://doi.org/10.1016/j.applthermaleng.2009.04.019.
- R. Pendyala, S. Jayanti, A.R. Balakrishnan, Convective heat transfer in singlephase flow in a vertical tube subjected to axial low frequency oscillations, Heat Mass Transf. 44 (2008) 857-864, https://doi.org/10.1007/s00231-007-0302-3.
- C. Wang, P. Gao, S. Wang, X. Li, C. Fang, Experimental study of single-phase forced circulation heat transfer in circular pipe under rolling motion, Nucl. Eng. Des. 265 (2013) 348-355, https://doi.org/10.1016/j.nucengdes.2013.08.066.
- D. Xing, C. Yan, L. Sun, C. Xu, Effects of rolling on characteristics of singlephase water flow in narrow rectangular ducts, Nucl. Eng. Des. 247 (2012) 221-229, https://doi.org/10.1016/j.nucengdes.2012.03.010.
- N. Zhuang, S. Tan, H. Yuan, C. Zhang, Flow resistance characteristics of pulsating laminar flow in rectangular channels, Ann. Nucl. Energy 73 (2014) 398-407, https://doi.org/10.1016/j.anucene.2014.06.057.
- S. Tan, Z. Wang, C. Wang, S. Lan, Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions, Exp. Therm. Fluid Sci. 50 (2013) 69-78, https://doi.org/10.1016/j.expthermflusci.2013.05.006.
- D. Xing, C. Yan, L. Sun, Flow fluctuation behaviors of single-phase forced circulation under rolling conditions, Ocean Eng. 82 (2014) 115-122, https://doi.org/10.1016/j.oceaneng.2014.03.006.
- Z. Yu, S. Lan, H. Yuan, S. Tan, Temperature fluctuation characteristics in a minirectangular channel under rolling motion, Prog. Nucl. Energy 81 (2015) 203-216, https://doi.org/10.1016/j.pnucene.2015.01.017.
- B.H. Yan, L. Yu, Y.H. Yang, Effects of ship motions on laminar flow in tubes, Ann. Nucl. Energy 37 (2010) 52-57, https://doi.org/10.1016/j.anucene.2009.09.013.
- B.H. Yan, H.Y. Gu, L. Yu, Numerical research of turbulent heat transfer in rectangular channels in ocean environment, Heat Mass Transf. Und Stoffuebertragung. 47 (2011) 821-831, https://doi.org/10.1007/s00231-011-0770-3.
- B.H. Yan, H.Y. Gu, L. Yu, Effects of rolling motion on the flow and heat transfer of turbulent pulsating flow in channels, Prog. Nucl. Energy 56 (2012) 24-36, https://doi.org/10.1016/j.pnucene.2011.12.017.
- B.H. Yan, H.Y. Gu, Effect of rolling motion on the expansion and contraction loss coefficients, Ann. Nucl. Energy 53 (2013) 259-266, https://doi.org/10.1016/j.anucene.2012.09.019.
- L. He, B. Wang, G. Xia, M. Peng, Study on natural circulation characteristics of an IPWR under inclined and rolling condition, Nucl. Eng. Des. 317 (2017) 81-89, https://doi.org/10.1016/j.nucengdes.2017.03.033.
- G. Xia, B. Wang, X. Du, C. Wang, Neutronic/thermal-hydraulic coupling analysis of natural circulation IPWR under ocean conditions, Ann. Nucl. Energy 114 (2018) 92-101, https://doi.org/10.1016/j.anucene.2017.10.043.
- S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (1996) 421-434, https://doi.org/10.13182/NSE96-A24205.
- K. Shibata, S. Koshizuka, K. Murotani, M. Sakai, I. Masaie, Boundary conditions for simulating karman vortices using the MPS method, J. Adv. Simul. Sci. Eng. 2 (2015) 235-254, https://doi.org/10.15748/jasse.2.235.
- A. Shakibaeinia, Y.-C. Jin, A weakly compressible MPS method for modeling of open-boundary free-surface flow, Int. J. Numer. Methods Fluids (2009), https://doi.org/10.1002/fld.2132 n/a-n/a.
- R. Chen, K. Guo, Y. Zhang, W. Tian, S. Qiu, G.H. Su, Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71, https://doi.org/10.1016/j.nucengdes.2018.01.019.
- K. Guo, R. Chen, Y. Li, W. Tian, G. Su, S. Qiu, Numerical simulation of Rayleigh-Taylor Instability with periodic boundary condition using MPS method, Prog. Nucl. Energy 109 (2018) 130-144, https://doi.org/10.1016/j.pnucene.2018.08.008.
- K. Guo, R. Chen, S. Qiu, W. Tian, G. Su, An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387, https://doi.org/10.1016/j.nucengdes.2018.10.006.
- X. Liu, K. Morita, S. Zhang, An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows, Comput. Methods Appl. Mech. Eng. 339 (2018) 467-487, https://doi.org/10.1016/j.cma.2018.05.005.
- J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977) 148, https://doi.org/10.2307/2005786.
- E.V. Lewis, The motion of ships in waves, in: Princ. Nav. Archit., Society of Naval Architects and Marine Engineers, Newyork, 1967.
-
C. Yan, C. Yan, L. Sun, Q. Tian, Experimental and theoretical analysis of bubble rising velocity in a 3
${\times}$ 3 rolling rod bundle under stagnant condition, Ann. Nucl. Energy 72 (72) 471-481, https://doi.org/10.1016/j.anucene.2014.06.028. - R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts, Elsevier, 1978, https://doi.org/10.1016/C2013-0-06152-X.
- S.K. Saha, Microchannel Phase Change Transport Phenomena, Elsevier, 2016, https://doi.org/10.1016/C2014-0-04349-3.
Cited by
- Effect of pitching and rolling motion on hydrothermal performance of rectangular channel flow enhanced by twisted-tape pin–fin array vol.192, 2019, https://doi.org/10.1016/j.applthermaleng.2021.116971
- Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU vol.53, pp.6, 2019, https://doi.org/10.1016/j.net.2020.12.013