DOI QR코드

DOI QR Code

Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method

  • Basit, Muhammad Abdul (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Tian, Wenxi (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Chen, Ronghua (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Qiu, Suizheng (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Su, Guanghui (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2019.04.10
  • Accepted : 2019.06.02
  • Published : 2019.12.25

Abstract

Modern small modular nuclear reactors can be built on a barge in ocean, therefore, their flow characteristics depend upon the ocean motions. In the present research, effect of rolling motion on flow and friction characteristics of laminar flow through vertical and horizontal narrow channels has been studied. A computer code has been developed using MPS method for two-dimensional Navier-Stokes equations with rolling motion force incorporated. Numerical results have been validated with the literature and have been found in good agreement. It has been found that the impact of rolling motions on flow characteristics weakens with increase in flow rate and fluid viscosity. For vertical narrow channels, the time averaged friction coefficient for vertical channels differed from steady friction coefficient. Furthermore, increasing the horizontal distance from rolling pivot enhanced the flow fluctuations but these stayed relatively unaffected by change in vertical distance of channel from the rolling axis. For horizontal narrow channels, the flow fluctuations were found to be sinusoidal in nature and their magnitude was found to be dependent mainly upon gravity fluctuations caused by rolling.

Keywords

References

  1. B.H. Yan, Review of the nuclear reactor thermal hydraulic research in ocean motions, Nucl. Eng. Des. 313 (2017) 370-385, https://doi.org/10.1016/j.nucengdes.2016.12.041.
  2. I. Ishida, T. Kusunoki, H. Murata, T. Yokomura, M. Kobayashi, H. Nariai, Thermal-hydraulic behavior of a marine reactor during oscillations, Nucl. Eng. Des. 120 (1990) 213-225, https://doi.org/10.1016/0029-5493(90)90374-7.
  3. S. chao Tan, G.H. Su, P. zhen Gao, Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition, Appl. Therm. Eng. 29 (2009) 3160-3168, https://doi.org/10.1016/j.applthermaleng.2009.04.019.
  4. R. Pendyala, S. Jayanti, A.R. Balakrishnan, Convective heat transfer in singlephase flow in a vertical tube subjected to axial low frequency oscillations, Heat Mass Transf. 44 (2008) 857-864, https://doi.org/10.1007/s00231-007-0302-3.
  5. C. Wang, P. Gao, S. Wang, X. Li, C. Fang, Experimental study of single-phase forced circulation heat transfer in circular pipe under rolling motion, Nucl. Eng. Des. 265 (2013) 348-355, https://doi.org/10.1016/j.nucengdes.2013.08.066.
  6. D. Xing, C. Yan, L. Sun, C. Xu, Effects of rolling on characteristics of singlephase water flow in narrow rectangular ducts, Nucl. Eng. Des. 247 (2012) 221-229, https://doi.org/10.1016/j.nucengdes.2012.03.010.
  7. N. Zhuang, S. Tan, H. Yuan, C. Zhang, Flow resistance characteristics of pulsating laminar flow in rectangular channels, Ann. Nucl. Energy 73 (2014) 398-407, https://doi.org/10.1016/j.anucene.2014.06.057.
  8. S. Tan, Z. Wang, C. Wang, S. Lan, Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions, Exp. Therm. Fluid Sci. 50 (2013) 69-78, https://doi.org/10.1016/j.expthermflusci.2013.05.006.
  9. D. Xing, C. Yan, L. Sun, Flow fluctuation behaviors of single-phase forced circulation under rolling conditions, Ocean Eng. 82 (2014) 115-122, https://doi.org/10.1016/j.oceaneng.2014.03.006.
  10. Z. Yu, S. Lan, H. Yuan, S. Tan, Temperature fluctuation characteristics in a minirectangular channel under rolling motion, Prog. Nucl. Energy 81 (2015) 203-216, https://doi.org/10.1016/j.pnucene.2015.01.017.
  11. B.H. Yan, L. Yu, Y.H. Yang, Effects of ship motions on laminar flow in tubes, Ann. Nucl. Energy 37 (2010) 52-57, https://doi.org/10.1016/j.anucene.2009.09.013.
  12. B.H. Yan, H.Y. Gu, L. Yu, Numerical research of turbulent heat transfer in rectangular channels in ocean environment, Heat Mass Transf. Und Stoffuebertragung. 47 (2011) 821-831, https://doi.org/10.1007/s00231-011-0770-3.
  13. B.H. Yan, H.Y. Gu, L. Yu, Effects of rolling motion on the flow and heat transfer of turbulent pulsating flow in channels, Prog. Nucl. Energy 56 (2012) 24-36, https://doi.org/10.1016/j.pnucene.2011.12.017.
  14. B.H. Yan, H.Y. Gu, Effect of rolling motion on the expansion and contraction loss coefficients, Ann. Nucl. Energy 53 (2013) 259-266, https://doi.org/10.1016/j.anucene.2012.09.019.
  15. L. He, B. Wang, G. Xia, M. Peng, Study on natural circulation characteristics of an IPWR under inclined and rolling condition, Nucl. Eng. Des. 317 (2017) 81-89, https://doi.org/10.1016/j.nucengdes.2017.03.033.
  16. G. Xia, B. Wang, X. Du, C. Wang, Neutronic/thermal-hydraulic coupling analysis of natural circulation IPWR under ocean conditions, Ann. Nucl. Energy 114 (2018) 92-101, https://doi.org/10.1016/j.anucene.2017.10.043.
  17. S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (1996) 421-434, https://doi.org/10.13182/NSE96-A24205.
  18. K. Shibata, S. Koshizuka, K. Murotani, M. Sakai, I. Masaie, Boundary conditions for simulating karman vortices using the MPS method, J. Adv. Simul. Sci. Eng. 2 (2015) 235-254, https://doi.org/10.15748/jasse.2.235.
  19. A. Shakibaeinia, Y.-C. Jin, A weakly compressible MPS method for modeling of open-boundary free-surface flow, Int. J. Numer. Methods Fluids (2009), https://doi.org/10.1002/fld.2132 n/a-n/a.
  20. R. Chen, K. Guo, Y. Zhang, W. Tian, S. Qiu, G.H. Su, Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71, https://doi.org/10.1016/j.nucengdes.2018.01.019.
  21. K. Guo, R. Chen, Y. Li, W. Tian, G. Su, S. Qiu, Numerical simulation of Rayleigh-Taylor Instability with periodic boundary condition using MPS method, Prog. Nucl. Energy 109 (2018) 130-144, https://doi.org/10.1016/j.pnucene.2018.08.008.
  22. K. Guo, R. Chen, S. Qiu, W. Tian, G. Su, An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387, https://doi.org/10.1016/j.nucengdes.2018.10.006.
  23. X. Liu, K. Morita, S. Zhang, An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows, Comput. Methods Appl. Mech. Eng. 339 (2018) 467-487, https://doi.org/10.1016/j.cma.2018.05.005.
  24. J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977) 148, https://doi.org/10.2307/2005786.
  25. E.V. Lewis, The motion of ships in waves, in: Princ. Nav. Archit., Society of Naval Architects and Marine Engineers, Newyork, 1967.
  26. C. Yan, C. Yan, L. Sun, Q. Tian, Experimental and theoretical analysis of bubble rising velocity in a 3 ${\times}$ 3 rolling rod bundle under stagnant condition, Ann. Nucl. Energy 72 (72) 471-481, https://doi.org/10.1016/j.anucene.2014.06.028.
  27. R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts, Elsevier, 1978, https://doi.org/10.1016/C2013-0-06152-X.
  28. S.K. Saha, Microchannel Phase Change Transport Phenomena, Elsevier, 2016, https://doi.org/10.1016/C2014-0-04349-3.

Cited by

  1. Effect of pitching and rolling motion on hydrothermal performance of rectangular channel flow enhanced by twisted-tape pin–fin array vol.192, 2019, https://doi.org/10.1016/j.applthermaleng.2021.116971
  2. Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU vol.53, pp.6, 2019, https://doi.org/10.1016/j.net.2020.12.013