DOI QR코드

DOI QR Code

Overexpression of Cuphea viscosissima CvFatB4 enhances 16:0 fatty acid accumulation in Arabidopsis

  • Yeon, Jinouk (Department of Biological Sciences, Chungnam National University) ;
  • Park, Jong-Sug (Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Sang Ho (Division of Biomedical Engineering & Health Science Management, Mokwon University) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration) ;
  • Yi, Hankuil (Department of Biological Sciences, Chungnam National University)
  • Received : 2019.07.23
  • Accepted : 2019.12.09
  • Published : 2019.12.31

Abstract

Cuphea viscosissima plants accumulate medium-chain fatty acids (MCFAs), i.e., those containing 8 ~ 14 carbons, in their seeds, in addition to the longer carbon chain fatty acids (≥16 carbons) found in a variety of plant species. Previous studies have reported the existence of three C. viscosissima MCFA-producing acyl-acyl carrier protein (ACP) thioesterases with different substrate specificities. In this study, CvFatB4, a novel cDNA clone encoding an acyl-ACP thioesterase (EC 3.1.2.14), was isolated from developing C. viscosissima seeds. Sequence alignment of the deduced amino acid sequence revealed that four catalytic residues for thioesterase activity are conserved and a putative N-terminal chloroplast transit peptide is present. Overexpression of CvFatB4 cDNA, which was under the control of the cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana led to an increase in 16:0 fatty acid (palmitate) levels in the seed oil at the expense of 18:1 and other non-MCFAs.

Keywords

References

  1. Beermann C, Winterling N, Green A, Mobius M, Schmitt JJ, Boehm G (2007) Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography-atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI ITMS). Lipids 42:383-394. doi.org/10.1007/s11745-006-3009-1
  2. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. doi.org/10.1046/j.1365-313x.1998.00343.x
  3. Dani KG, Hatti KS, Ravikumar P, Kush A (2011) Structural and functional analyses of a saturated acyl-ACP thioesterase, type B from immature seed tissue of Jatropha curcas. Plant Biol (Stuttg) 13:453-61.doi.org/10.1111/j.1438-8677.2010.00410.x
  4. Davies HM (1993) Medium chain acyl-ACP hydrolysis activities of developing oilseeds. Phytochemistry 33: 1353-1356. doi.org/10.1016/0031-9422(93)85089-A
  5. Davies HM, Anderson L, Fan C, Hawkins DJ (1991) Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch Biochem Biophys 290: 37-45. doi.org/10.1016/0003-9861(91)90588-a
  6. Dehesh K., Edwards P, Hayes T, Cranmer AM, Fillatti J (1996a) Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiol 110: 203-210. doi.org/10.1104/pp.110.1.203
  7. Dehesh K, Jones A, Knutzon DS, Voelker TA (1996b) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by over-expression of ChFatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9: 167-172. doi.org/10.1046/j.1365-313X.1996.09020167.x
  8. Dormann P, Voelker TA, Ohlrogge JB (1995) Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys. 316:612-618 https://doi.org/10.1006/abbi.1995.1081
  9. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nature Protocols 2: 953-971. doi.org/10.1038/nprot.2007.131
  10. Feng Y, Wang Y, Liu J, Liu Y, Cao X, Xue S (2017) Structural insight into acyl-ACP thioesterase toward substrate specificity design. ACS Chem Biol 12:2830-2836. doi.org/10.1021/acschembio.7b00641
  11. Filichkin SA, Slabaugh MB, Knapp SJ (2006) New FATB thioesterases from a high-laurate Cuphea species: Functional and complementation analyses. Eur J Lipid Sci Technol 108:979-990. doi.org/10.1002/ejlt.200600158
  12. Graham SA, Hirsinger F, Robbelen G (1981) Fatty acids of Cuphea (Lythraceae) seed lipids and their systematic significance. Am J Bot 68:908-917. doi.org/10.1002/j.1537-2197.1981.tb07806.x
  13. Harwood JL (1988) Fatty acid metabolism. Ann Rev Plant Biol 39:101-138. doi.org/10.1146/annurev.pp.39.060188.000533
  14. Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12: 44. doi.org/10.1186/1471-2091-12-44
  15. Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7: 359-371. doi.org/10.1105/tpc.7.3.359
  16. Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam JW, Cahoon EB (2015) Toward production of jet fuel functionality in oilseeds:identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. J Exp Bot 66:4251-4265. doi.org/10.1093/jxb/erv225
  17. Knapp SJ, Tagliani LA (1991) Two medium-chain fatty acid mutants of Cuphea viscosissima: A source of medium-chain fatty acids. J Am Oil Chem Soc 68:515-517. doi.org/10.1111/j.1439-0523.1991.tb00520.x
  18. Knutzon DS, Hayes TR, Wyrick A, Xiong H, Maelor Davies H, Voelker, TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylgycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739-746. doi.org/10.1104/pp.120.3.739
  19. Leonard JL, Slabaugh MB, Knapp SJ (1997) Cuphea wrightii thioesterases have unexpected broad specificities on saturated fatty acids. Plant Mol Biol 34:669-679. https://doi.org/10.1023/A:1005846830784
  20. Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63-70. doi.org/10.1007/BF02773350
  21. Mayer KM, Shanklin J (2005) A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J Biol Chem 280:3621-3627. doi.org/10.1074/jbc.M411351200
  22. Nam JW, Yeon J, Jeong J, Cho E, Kim HB, Hur Y, Lee KR, Yi H (2019) Overexpression of acyl-ACP thioesterases, CpFatB4 and CpFatB5, induce distinct gene expression reprogramming in developing seeds of Brassica napus. Int J Mol Sci. 20(13), 3334. doi.org/10.3390/ijms20133334
  23. Pollard MR, Anderson L, Fan C, Hawkins DJ, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys. 284: 306-312. doi.org/10.1016/0003-9861(91)90300-8
  24. Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403: 25-34. doi.org/10.1016/S0003-9861(02)00017-6
  25. Sanchez-Garcia A, Moreno-Perez AJ, Muro-Pastor AM, Salas JJ, Garces R, Martinez-Force E. (2010) Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71: 860-869. doi.org/10.1016/j.phytochem.2010.03.015
  26. Slabas AR, Fawcett T (1992) The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol 19: 161-191. doi.org/10.1007/BF00015613
  27. Somerville C, Browse J (1991) Plant lipids: Metabolism, mutants and membrane. Science 252: 80-87. doi.org/10.1126/science.252.5002.80
  28. Stumpf PK (1987) The biosynthesis of saturated fatty acids. In:Stumpf PK, Conn EE. (ed) The Biochemistry of Plants, Academic press, New York, pp 121-136. Https://10.1016/B978-0-12-675404-9.50013-8
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-2729. doi.org/10.1093/molbev/mst197
  30. Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545-554. doi.org/10.1093/jxb/erl228
  31. Thompson GA, Roughan PG, Browse JA, Slack CR, Gardiner SE (1986) Spinach leaves desaturate exogenous [$^{14}C$] palmitate to hexadecatrienoate: evidence that de novo glycerolipid synthesis in chloroplasts can utilize free fatty acids imported from other cellular compartments. Plant Physiol 82: 357-362. doi.org/10.1104/pp.82.2.357
  32. Tizaoui K, Kchouk ME (2012) Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genet Mol Biol 35:640-649. doi.org/10.1590/S1415-47572012000400015
  33. Tjellstrom H, Strawsine M, Silva J, Cahoon EB, Ohlrogge JB (2013) Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 587:936-942. doi.org/10.1016/j.febslet.2013.02.021
  34. Topfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268:681-686. doi.org/10.1126/science.268.5211.681
  35. Topper R, Martini N (1994) Molecular cloning of cDNAs or genes encoding proteins involved in de novo fatty acid biosynthesis in plants. J of Plant Physiol 143:416-425. doi.org/10.1016/S0176-1617(11)81801-8
  36. Voelker TA, Hayes TR, Cranmer AM, Turner, JC, Davies HM (1996) Genetic engineering of a quantitative trait-metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9: 167-172. doi.org/10.1046/j.1365-313X.1996.09020229.x
  37. Voelker TA, Jones A, Cranmer AM, Davies HM, Knuntzon DS (1997) Broad-range and binary-range acyl-acyl-carrier-protein thioesterases suggest an alternative mechanism for mediumchain production in seeds. Plant Physiol 114:669-677. doi.org/10.1104/pp.114.2.669
  38. Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies M (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72-74. doi.org/10.1126/science.1621095
  39. Wirasnita R, Hadibarata T, Novelina YM, Yusoff ARM, Yusop Z (2013) A modified methylation method to determine fatty acid content by gas chromatography. Bull Korean Chem Soc 34:3239-3242. doi.org/10.5012/bkcs.2013.34.11.3239
  40. Yi H, Richards EJ (2009) Gene duplication and hypermutation of the pathogen Resistance gene SNC1 in the Arabidopsis bal variant. Genetics 183: 1227-1234. doi.org/10.1534/genetics.109.105569
  41. Yuan L, Nelson BA, Cary G (1996) The catalytic cysteine and histidine in the plant acyl-acyl carrier protein thioesterases. J Biol Chem 271:3417-3419. doi.org/10.1074/jbc.271.7.3417