References
- Aceto S, Gaudio L (2011) The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 12:342-356 https://doi.org/10.2174/138920211796429754
- Acri-Nunes-Miranda R, Mondragon-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front. Plant sci 5:76 https://doi.org/10.3389/fpls.2014.00076
- Adamczyk BJ, Fernandez DE (2009) MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis. PLANT Physiol. 149:1713-1723 https://doi.org/10.1104/pp.109.135806
- Alvarez-Buylla ER, Liljegren SJ, Pelaz S, et al. (2000b) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24:457-66 https://doi.org/10.1046/j.1365-313x.2000.00891.x
- Alvarez-Buylla ER, Pelaz S, Liljegren SJ, et al. (2000a) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. U. S. A. 97:5328-33 https://doi.org/10.1073/pnas.97.10.5328
- Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci. 1:228-232 https://doi.org/10.1016/S1360-1385(96)86900-0
- Arora R, Agarwal P, Ray S, et al. (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242 https://doi.org/10.1186/1471-2164-8-242
- Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC (2008) The MADS Domain Protein DIANA Acts Together with AGAMOUS-LIKE80 to Specify the Central Cell in Arabidopsis Ovules. Plant Cell Online 20:2088-2101 https://doi.org/10.1105/tpc.108.058958
- Boss PK, Sensi E, Hua C, Davies C, Thomas MR (2002) Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci 162:887-895 https://doi.org/10.1016/S0168-9452(02)00034-1
- Bouyer D, Roudier F, Heese M, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. (GP Copenhaver, Ed.). PLoS Genet. 7:e1002014 https://doi.org/10.1371/journal.pgen.1002014
- Bowman JL, Smyth DR, Meyerowitzt EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1-20 https://doi.org/10.1242/dev.112.1.1
- Cai J, Liu X, Vanneste K, et al. (2014) The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47:65-72 https://doi.org/10.1038/ng.3149
- Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four Orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS Box Genes Show Novel Expression Patterns and Cause Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 50:1425-1438 https://doi.org/10.1093/pcp/pcp087
- Chang YY, Kao NH, Li JY, et al. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant physiol. 152:837-53 https://doi.org/10.1104/pp.109.147116
- Chen YY, Lee PF, Hsiao YY, et al. (2012) C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) Display Functions in Gynostemium and Ovule Development. Plant Cell Physiol. 53:1053-1067 https://doi.org/10.1093/pcp/pcs048
- Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37 https://doi.org/10.1038/353031a0
- Davies B, Egea-Cortines M, Andrade Silva E de, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15:4330-43 https://doi.org/10.1002/j.1460-2075.1996.tb00807.x
-
De Bodt S, Raes J, Van de Peer Y, Thei
$\ss$ en G (2003) And then there were many: MADS goes genomic. Trends Plant Sci. 8:475-483 https://doi.org/10.1016/j.tplants.2003.09.006 - Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant physiol. 149:354-369 https://doi.org/10.1104/pp.108.131052
- Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002 https://doi.org/10.1016/0092-8674(91)90551-9
- Duan W, Song X, Liu T, et al. (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol. Genet. Genomics 290:239-255
- Eckardt NA (2003) MADS Monsters: Controlling Floral Organ Identity. PLANT CELL ONLINE 15:803-805 https://doi.org/10.1105/tpc.150410
- Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18:5370-9 https://doi.org/10.1093/emboj/18.19.5370
- Fan CM, Wang X, Wang YW et al. (2013) Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development. (T Zhang, Ed.). PLoS ONE 8:e62288 https://doi.org/10.1371/journal.pone.0062288
-
Fischer A, Baum N, Saedler H, Thei
$\ss$ en G (1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23:1901-1911 https://doi.org/10.1093/nar/23.11.1901 - Folter S de, Immink RGH, Kieffer M, et al. (2005) Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell Online 17:1424-1433 https://doi.org/10.1105/tpc.105.031831
- Fornara F, Parenicova L, Falasca G, et al. (2004) Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes. Plant Physiol 135:2207-2219 https://doi.org/10.1104/pp.104.045039
- Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222:730-742 https://doi.org/10.1007/s00425-005-0020-3
- Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19:801-14 https://doi.org/10.1093/oxfordjournals.molbev.a004137
- Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO J. 21:4327-37 https://doi.org/10.1093/emboj/cdf432
- Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D Class MADS Box Genes from Two Monocots, Orchid (Oncidium Gower Ramsey) and Lily (Lilium longiflorum), Exhibit Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 51:102
- Hsu HF, Hsu WH, Lee YI, et al. (2015) Model for perianth formation in orchids. Nature Plants 1:15046 https://doi.org/10.1038/nplants.2015.46
- Hu L, Liu S, Somers DJ (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245-256 https://doi.org/10.1139/g2012-009
- Immink RG, Tonaco IA, Folter S de, et al. (2009) SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10:R24 https://doi.org/10.1186/gb-2009-10-2-r24
- Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454-460 https://doi.org/10.1016/j.gde.2005.06.001
- Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant cell 2:741-53 https://doi.org/10.1105/tpc.2.8.741
- Jofuku KD, Boer BG den, Montagu M Van, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225 https://doi.org/10.2307/3869820
- Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant cell 20:635-47 https://doi.org/10.1105/tpc.107.055137
- Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-83 https://doi.org/10.1093/genetics/149.2.765
- Li C, Wang Y, Xu L, et al. (2016) Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Front. Plant Sci. 07:1390
- Lin CS, Hsu CT, Liao DC, et al. (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol. J.14:284-298 https://doi.org/10.1111/pbi.12383
- Liu C, Chen H, Er HL, et al. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481-1491 https://doi.org/10.1242/dev.020255
- Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ (1993) Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol. Biol. 23:901-904 https://doi.org/10.1007/BF00021545
- Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification:brave new whorls. Trends Plant Sci. 10:427-435 https://doi.org/10.1016/j.tplants.2005.07.008
- Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23:865-72 https://doi.org/10.1105/tpc.110.081737
- Masiero S, Colombo L, Grini PE, Schnittger A, et al. (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23: 865-872 https://doi.org/10.1105/tpc.110.081737
- Meyerowitz E, Bowman J, Brockman L (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Dev. Suppl. I 157-161
- Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant cell 11:949-56 https://doi.org/10.1105/tpc.11.5.949
-
Mondragon-Palomino M, Nter Thei
$\ss$ en G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany 104:583-594 https://doi.org/10.1093/aob/mcn258 -
Mondragon-Palomino M, Thei
$\ss$ en G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci. 13:51-59 https://doi.org/10.1016/j.tplants.2007.11.007 - Mondragon-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J. 66:1008-1019 https://doi.org/10.1111/j.1365-313X.2011.04560.x
- Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc. Natl. Acad. Sci. 101:1910-1915 https://doi.org/10.1073/pnas.0308430100
- Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989-1003 https://doi.org/10.1016/0092-8674(88)90244-9
- Ohmori S, Kimizu M, Sugita M, et al. (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant cell 21: 3008-25 https://doi.org/10.1105/tpc.109.068742
- Parenicova L, Folter S de, Kieffer M, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant cell 15:1538-51 https://doi.org/10.1105/tpc.011544
-
Passmore S, Maine GT, Elble R, Christ C, Tye B-K (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT
${\alpha}$ cells. J Mol. Biol. 204:593-606 https://doi.org/10.1016/0022-2836(88)90358-0 - Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203 https://doi.org/10.1038/35012103
- Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, et al. (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1:255-266 https://doi.org/10.1111/j.1365-313X.1991.00255.x
- Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 Is Required for Central Cell and Endosperm Development in Arabidopsis. Plant Cell Online 18:1862-1872 https://doi.org/10.1105/tpc.106.040824
- Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. U. S. A. 93:4793-8 https://doi.org/10.1073/pnas.93.10.4793
- Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol. Chem. 378:1079-101
- Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant journal: for cell and molecular biology 29:183-91 https://doi.org/10.1046/j.0960-7412.2001.01210.x
- Sharma A, Shumayla, Tyagi S, Alok A, Singh K, Upadhyay SK (2019) Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science 290 https://doi.org/10.1016/j.plantsci.2019.110317
- Shimeld SM (1999) Gene function, gene networks and the fate of duplicated genes. Semin. Cell Dev. Biol. 10:549-553 https://doi.org/10.1006/scdb.1999.0336
- Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur. J. Biochem. 229:1-13 https://doi.org/10.1111/j.1432-1033.1995.tb20430.x
- Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol. Biol. Rep. 40:3901-3911 https://doi.org/10.1007/s11033-012-2438-6
- Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS-and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266-274 https://doi.org/10.1016/j.gene.2005.08.014
- Sommer H, Beltran JP, Huijser P, et al. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9:605-13 https://doi.org/10.1002/j.1460-2075.1990.tb08152.x
- Song IJ, Nakamura T, Fukuda T, et al. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev. Genes Evol. 216:301-313 https://doi.org/10.1007/s00427-005-0057-0
- Southerton SG, Marshall H, Mouradov A, Teasdale RD (1998) Eucalypt MADS-Box Genes Expressed in Developing Flowers. Plant Physiol. 118:365-372 https://doi.org/10.1104/pp.118.2.365
- Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, et al. (2008) An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis. Plant physiol 146:1182-1192 https://doi.org/10.1104/pp.107.108647
- Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85 https://doi.org/10.1016/S1369-5266(00)00139-4
- Theissen G, Becker A, Rosa A Di, et al. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115-49 https://doi.org/10.1023/A:1006332105728
- Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43:484-516 https://doi.org/10.1007/BF02337521
- Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-71 https://doi.org/10.1038/35054172
- Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z (2015) Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 555:277-290 https://doi.org/10.1016/j.gene.2014.11.018
- Tsai WC, Kuoh CS, Chuang MH, Chen WH, et al. (2004) Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant Cell Physiol. 45:831-844 https://doi.org/10.1093/pcp/pch095
- Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, et al.(2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139 https://doi.org/10.1093/pcp/pci125
- Wang SY, Lee PF, Lee YI, et al. (2011) Duplicated C-Class MADS-Box Genes Reveal Distinct Roles in Gynostemium Development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol. 52:563-577 https://doi.org/10.1093/pcp/pcr015
- Wei B, Zhang RZ, Guo JJ, et al. (2014) Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon. (S Lin, Ed.). PLoS ONE 9:e84781 https://doi.org/10.1371/journal.pone.0084781
- Wells CE, Vendramin E, Jimenez Tarodo S, Verde I, Bielenberg DG (2015) A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 15:41 https://doi.org/10.1186/s12870-015-0436-2
- Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54-68 https://doi.org/10.1111/j.1365-313X.2006.02669.x
- Yan L, Wang X, Liu H, et al. (2015) The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Mol. Plant 8:922-934 https://doi.org/10.1016/j.molp.2014.12.011
- Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39 https://doi.org/10.1038/346035a0
- Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant physiol. 123:1325-36 https://doi.org/10.1104/pp.123.4.1325
- Zhang GQ, Liu KW, Li Z, et al. (2017) The Apostasia genome and the evolution of orchids. Nature Publishing Group 549
- Zhang GQ, Xu Q, Bian C, et al. (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029 https://doi.org/10.1038/srep19029
- Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51:51-59 https://doi.org/10.1093/jxb/51.342.51
- Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q (2006) Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol. Genet. Genomics 276:334-350 https://doi.org/10.1007/s00438-006-0147-3
- Zhao Y, Li X, Chen W, et al. (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell, Tissue Organ Cult. 105:159-173 https://doi.org/10.1007/s11240-010-9848-8
- Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-Box Proteins: Conserved Regulators of the Gametophytic Generation of Land Plants. Mol. Biol. Evol. 27:1201-1211 https://doi.org/10.1093/molbev/msq005