DOI QR코드

DOI QR Code

Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae)

  • Himani, Himani (Department of Botany, Panjab University) ;
  • Ramkumar, Thakku R. (Department of Botany, Panjab University) ;
  • Tyagi, Shivi (Department of Botany, Panjab University) ;
  • Sharma, Himanshu (Department of Botany, Panjab University) ;
  • Upadhyay, Santosh K. (Department of Botany, Panjab University) ;
  • Sembi, Jaspreet K. (Department of Botany, Panjab University)
  • Received : 2019.08.13
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

Orchids are indispensable to the floriculture industry due to their unique floral organization. The flowers have two outer whorls of tepals including a lip (labellum), and two inner whorls, pollinia and gynostemiun (column). The floral organization and development is controlled at the molecular level, mainly by the MADS-box gene family, comprising homeotic genes divided into type I and type II groups. The type I group has four sub-groups, Mα, Mβ, Mγ, and Mδ, playing roles in seed, embryo, and female reproductive organ development; the type II group genes form classes A, B, C, D, and E, which are a part of the MIKCC subgroup with specific roles in florigenesis and organization. The coordinated functioning of these classes regulates the development of various floral whorls. The availability of genome and transcriptome sequence data for Phalaenopsis equestris offers an opportunity to validate the ABCDE model of flower development. Hence, this study sought to characterize the MADS-box gene family and elucidate of the ABCDE model. A total of 48 identified MADS-box proteins, including 20 type I [Mα (12), Mγ (8)] and 28 type II [MIKCC (27), MIKC*(1)] members, were characterized for physico-chemical features and domains and motifs organization. The exon-intron distribution and the upstream cis-regulatory elements in the promoter regions of MADS-box genes were also analysed. The discrete pace of duplication events in type I and type II genes suggested differential evolutionary constraints between groups. The correlation of spatio-temporal expression pattern with the presence of specific cis-regulatory elements and putative protein-protein interaction within the different classes of MADS-box gene family endorse the ABCDE model of floral development.

Keywords

References

  1. Aceto S, Gaudio L (2011) The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 12:342-356 https://doi.org/10.2174/138920211796429754
  2. Acri-Nunes-Miranda R, Mondragon-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front. Plant sci 5:76 https://doi.org/10.3389/fpls.2014.00076
  3. Adamczyk BJ, Fernandez DE (2009) MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis. PLANT Physiol. 149:1713-1723 https://doi.org/10.1104/pp.109.135806
  4. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, et al. (2000b) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24:457-66 https://doi.org/10.1046/j.1365-313x.2000.00891.x
  5. Alvarez-Buylla ER, Pelaz S, Liljegren SJ, et al. (2000a) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. U. S. A. 97:5328-33 https://doi.org/10.1073/pnas.97.10.5328
  6. Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci. 1:228-232 https://doi.org/10.1016/S1360-1385(96)86900-0
  7. Arora R, Agarwal P, Ray S, et al. (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242 https://doi.org/10.1186/1471-2164-8-242
  8. Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC (2008) The MADS Domain Protein DIANA Acts Together with AGAMOUS-LIKE80 to Specify the Central Cell in Arabidopsis Ovules. Plant Cell Online 20:2088-2101 https://doi.org/10.1105/tpc.108.058958
  9. Boss PK, Sensi E, Hua C, Davies C, Thomas MR (2002) Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci 162:887-895 https://doi.org/10.1016/S0168-9452(02)00034-1
  10. Bouyer D, Roudier F, Heese M, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. (GP Copenhaver, Ed.). PLoS Genet. 7:e1002014 https://doi.org/10.1371/journal.pgen.1002014
  11. Bowman JL, Smyth DR, Meyerowitzt EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1-20 https://doi.org/10.1242/dev.112.1.1
  12. Cai J, Liu X, Vanneste K, et al. (2014) The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47:65-72 https://doi.org/10.1038/ng.3149
  13. Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four Orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS Box Genes Show Novel Expression Patterns and Cause Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 50:1425-1438 https://doi.org/10.1093/pcp/pcp087
  14. Chang YY, Kao NH, Li JY, et al. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant physiol. 152:837-53 https://doi.org/10.1104/pp.109.147116
  15. Chen YY, Lee PF, Hsiao YY, et al. (2012) C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) Display Functions in Gynostemium and Ovule Development. Plant Cell Physiol. 53:1053-1067 https://doi.org/10.1093/pcp/pcs048
  16. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37 https://doi.org/10.1038/353031a0
  17. Davies B, Egea-Cortines M, Andrade Silva E de, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15:4330-43 https://doi.org/10.1002/j.1460-2075.1996.tb00807.x
  18. De Bodt S, Raes J, Van de Peer Y, Thei$\ss$en G (2003) And then there were many: MADS goes genomic. Trends Plant Sci. 8:475-483 https://doi.org/10.1016/j.tplants.2003.09.006
  19. Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant physiol. 149:354-369 https://doi.org/10.1104/pp.108.131052
  20. Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002 https://doi.org/10.1016/0092-8674(91)90551-9
  21. Duan W, Song X, Liu T, et al. (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol. Genet. Genomics 290:239-255
  22. Eckardt NA (2003) MADS Monsters: Controlling Floral Organ Identity. PLANT CELL ONLINE 15:803-805 https://doi.org/10.1105/tpc.150410
  23. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18:5370-9 https://doi.org/10.1093/emboj/18.19.5370
  24. Fan CM, Wang X, Wang YW et al. (2013) Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development. (T Zhang, Ed.). PLoS ONE 8:e62288 https://doi.org/10.1371/journal.pone.0062288
  25. Fischer A, Baum N, Saedler H, Thei$\ss$en G (1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23:1901-1911 https://doi.org/10.1093/nar/23.11.1901
  26. Folter S de, Immink RGH, Kieffer M, et al. (2005) Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell Online 17:1424-1433 https://doi.org/10.1105/tpc.105.031831
  27. Fornara F, Parenicova L, Falasca G, et al. (2004) Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes. Plant Physiol 135:2207-2219 https://doi.org/10.1104/pp.104.045039
  28. Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222:730-742 https://doi.org/10.1007/s00425-005-0020-3
  29. Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19:801-14 https://doi.org/10.1093/oxfordjournals.molbev.a004137
  30. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO J. 21:4327-37 https://doi.org/10.1093/emboj/cdf432
  31. Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D Class MADS Box Genes from Two Monocots, Orchid (Oncidium Gower Ramsey) and Lily (Lilium longiflorum), Exhibit Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 51:102
  32. Hsu HF, Hsu WH, Lee YI, et al. (2015) Model for perianth formation in orchids. Nature Plants 1:15046 https://doi.org/10.1038/nplants.2015.46
  33. Hu L, Liu S, Somers DJ (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245-256 https://doi.org/10.1139/g2012-009
  34. Immink RG, Tonaco IA, Folter S de, et al. (2009) SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10:R24 https://doi.org/10.1186/gb-2009-10-2-r24
  35. Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454-460 https://doi.org/10.1016/j.gde.2005.06.001
  36. Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant cell 2:741-53 https://doi.org/10.1105/tpc.2.8.741
  37. Jofuku KD, Boer BG den, Montagu M Van, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225 https://doi.org/10.2307/3869820
  38. Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant cell 20:635-47 https://doi.org/10.1105/tpc.107.055137
  39. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-83 https://doi.org/10.1093/genetics/149.2.765
  40. Li C, Wang Y, Xu L, et al. (2016) Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Front. Plant Sci. 07:1390
  41. Lin CS, Hsu CT, Liao DC, et al. (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol. J.14:284-298 https://doi.org/10.1111/pbi.12383
  42. Liu C, Chen H, Er HL, et al. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481-1491 https://doi.org/10.1242/dev.020255
  43. Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ (1993) Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol. Biol. 23:901-904 https://doi.org/10.1007/BF00021545
  44. Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification:brave new whorls. Trends Plant Sci. 10:427-435 https://doi.org/10.1016/j.tplants.2005.07.008
  45. Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23:865-72 https://doi.org/10.1105/tpc.110.081737
  46. Masiero S, Colombo L, Grini PE, Schnittger A, et al. (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23: 865-872 https://doi.org/10.1105/tpc.110.081737
  47. Meyerowitz E, Bowman J, Brockman L (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Dev. Suppl. I 157-161
  48. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant cell 11:949-56 https://doi.org/10.1105/tpc.11.5.949
  49. Mondragon-Palomino M, Nter Thei$\ss$en G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany 104:583-594 https://doi.org/10.1093/aob/mcn258
  50. Mondragon-Palomino M, Thei$\ss$en G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci. 13:51-59 https://doi.org/10.1016/j.tplants.2007.11.007
  51. Mondragon-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J. 66:1008-1019 https://doi.org/10.1111/j.1365-313X.2011.04560.x
  52. Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc. Natl. Acad. Sci. 101:1910-1915 https://doi.org/10.1073/pnas.0308430100
  53. Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989-1003 https://doi.org/10.1016/0092-8674(88)90244-9
  54. Ohmori S, Kimizu M, Sugita M, et al. (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant cell 21: 3008-25 https://doi.org/10.1105/tpc.109.068742
  55. Parenicova L, Folter S de, Kieffer M, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant cell 15:1538-51 https://doi.org/10.1105/tpc.011544
  56. Passmore S, Maine GT, Elble R, Christ C, Tye B-K (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT${\alpha}$ cells. J Mol. Biol. 204:593-606 https://doi.org/10.1016/0022-2836(88)90358-0
  57. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203 https://doi.org/10.1038/35012103
  58. Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, et al. (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1:255-266 https://doi.org/10.1111/j.1365-313X.1991.00255.x
  59. Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 Is Required for Central Cell and Endosperm Development in Arabidopsis. Plant Cell Online 18:1862-1872 https://doi.org/10.1105/tpc.106.040824
  60. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. U. S. A. 93:4793-8 https://doi.org/10.1073/pnas.93.10.4793
  61. Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol. Chem. 378:1079-101
  62. Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant journal: for cell and molecular biology 29:183-91 https://doi.org/10.1046/j.0960-7412.2001.01210.x
  63. Sharma A, Shumayla, Tyagi S, Alok A, Singh K, Upadhyay SK (2019) Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science 290 https://doi.org/10.1016/j.plantsci.2019.110317
  64. Shimeld SM (1999) Gene function, gene networks and the fate of duplicated genes. Semin. Cell Dev. Biol. 10:549-553 https://doi.org/10.1006/scdb.1999.0336
  65. Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur. J. Biochem. 229:1-13 https://doi.org/10.1111/j.1432-1033.1995.tb20430.x
  66. Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol. Biol. Rep. 40:3901-3911 https://doi.org/10.1007/s11033-012-2438-6
  67. Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS-and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266-274 https://doi.org/10.1016/j.gene.2005.08.014
  68. Sommer H, Beltran JP, Huijser P, et al. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9:605-13 https://doi.org/10.1002/j.1460-2075.1990.tb08152.x
  69. Song IJ, Nakamura T, Fukuda T, et al. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev. Genes Evol. 216:301-313 https://doi.org/10.1007/s00427-005-0057-0
  70. Southerton SG, Marshall H, Mouradov A, Teasdale RD (1998) Eucalypt MADS-Box Genes Expressed in Developing Flowers. Plant Physiol. 118:365-372 https://doi.org/10.1104/pp.118.2.365
  71. Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, et al. (2008) An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis. Plant physiol 146:1182-1192 https://doi.org/10.1104/pp.107.108647
  72. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85 https://doi.org/10.1016/S1369-5266(00)00139-4
  73. Theissen G, Becker A, Rosa A Di, et al. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115-49 https://doi.org/10.1023/A:1006332105728
  74. Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43:484-516 https://doi.org/10.1007/BF02337521
  75. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-71 https://doi.org/10.1038/35054172
  76. Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z (2015) Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 555:277-290 https://doi.org/10.1016/j.gene.2014.11.018
  77. Tsai WC, Kuoh CS, Chuang MH, Chen WH, et al. (2004) Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant Cell Physiol. 45:831-844 https://doi.org/10.1093/pcp/pch095
  78. Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, et al.(2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139 https://doi.org/10.1093/pcp/pci125
  79. Wang SY, Lee PF, Lee YI, et al. (2011) Duplicated C-Class MADS-Box Genes Reveal Distinct Roles in Gynostemium Development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol. 52:563-577 https://doi.org/10.1093/pcp/pcr015
  80. Wei B, Zhang RZ, Guo JJ, et al. (2014) Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon. (S Lin, Ed.). PLoS ONE 9:e84781 https://doi.org/10.1371/journal.pone.0084781
  81. Wells CE, Vendramin E, Jimenez Tarodo S, Verde I, Bielenberg DG (2015) A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 15:41 https://doi.org/10.1186/s12870-015-0436-2
  82. Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54-68 https://doi.org/10.1111/j.1365-313X.2006.02669.x
  83. Yan L, Wang X, Liu H, et al. (2015) The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Mol. Plant 8:922-934 https://doi.org/10.1016/j.molp.2014.12.011
  84. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39 https://doi.org/10.1038/346035a0
  85. Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant physiol. 123:1325-36 https://doi.org/10.1104/pp.123.4.1325
  86. Zhang GQ, Liu KW, Li Z, et al. (2017) The Apostasia genome and the evolution of orchids. Nature Publishing Group 549
  87. Zhang GQ, Xu Q, Bian C, et al. (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029 https://doi.org/10.1038/srep19029
  88. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51:51-59 https://doi.org/10.1093/jxb/51.342.51
  89. Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q (2006) Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol. Genet. Genomics 276:334-350 https://doi.org/10.1007/s00438-006-0147-3
  90. Zhao Y, Li X, Chen W, et al. (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell, Tissue Organ Cult. 105:159-173 https://doi.org/10.1007/s11240-010-9848-8
  91. Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-Box Proteins: Conserved Regulators of the Gametophytic Generation of Land Plants. Mol. Biol. Evol. 27:1201-1211 https://doi.org/10.1093/molbev/msq005