Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara (School of Materials Science and Engineering, Changwon National University) ;
  • Hussain, Imad (School of Materials Science and Engineering, Changwon National University) ;
  • Riyazuddin, Riyazuddin (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
  • Received : 2019.04.17
  • Accepted : 2019.07.05
  • Published : 2019.08.01

Abstract

Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.

Keywords

References

  1. T.-A. Nguyen, H. Nguyen, T. Vuong Nguyen, H.Thai and Xianming Shi, J. Nanosci. Nanotechnol. 16 (2016) 9874-9881. https://doi.org/10.1166/jnn.2016.12162
  2. P. Saravanan, K. Jayamoorthy and S. Ananda Kumar, Journal of Science Advanced Materials and Devices. 1 (2016) 367-378. https://doi.org/10.1016/j.jsamd.2016.07.001
  3. Shuang Hu, Lei Song and Yuan Hu, "Polym .Plast. Technol. Eng. 52 (2013) 393-399. https://doi.org/10.1080/03602559.2012.754465
  4. Hammad Aziz and Faiz Ahmad, Prog. Org. coat. 101 (2016) 431-439. https://doi.org/10.1016/j.porgcoat.2016.09.017
  5. Zhaolu Qin, Dinghua Li and Rongjie Yang, Polym. Degrad. Stab. 126 (2016) 117-124. https://doi.org/10.1016/j.polymdegradstab.2016.01.022
  6. Z.Q. Lei, Y.M. Cao, F. Xie and H. Ren, J. Appl. Polym. Sci. 124 (2012) 781-788. https://doi.org/10.1002/app.35064
  7. S. Zhang and A.R. Horrocks, Prog. Polym. Sci. 28 (2003) 1517-1538. https://doi.org/10.1016/j.progpolymsci.2003.09.001
  8. G. Camino, L. Costa and L. Trossarelli, Polym. Degrad. Stab. 7 (1984) 25-31. https://doi.org/10.1016/0141-3910(84)90027-2
  9. H.J. Lin, H. Yan and B. Liu, Polym. Degrad. Stab. 96 (2011) 1382-1388. https://doi.org/10.1016/j.polymdegradstab.2011.03.016
  10. C.X. Zhao, Y.T. Li and Y.L. Xing, J. Appl. Polym. Sci. 131 (2014) 40218.
  11. G. Griffin, G, A. Bicknell and T. Brown, Journal of Fire Sciences. 23 (2005) 303-328. https://doi.org/10.1177/0734904105048598
  12. M. Hassan, R. Kozlowski and B. Obidzinski, J. Appl. Polym. Sci. 110 (2008) 83-90. https://doi.org/10.1002/app.28518
  13. J. Alongi, F. Bosco, F. Carosio, A. Di Blasio and G. Malucelli, Materials Today. 17 (2016) 152-153.
  14. Y.Xiao, Y, Zheng, X.Wang, Z, Chen and Z. Xu, J. Appl. Polym. Sci. 131 (2014) 1-8.
  15. B. Schartel, Materials. 3(10) (2010) 4710-4745. https://doi.org/10.3390/ma3104710
  16. C. Bao, Y. Guo, L.Song, Y. Kan, X. Qian and Y. Hu, J. Mater. Chem. 21 (2011) 13290-13298. https://doi.org/10.1039/c1jm11434d
  17. F.L. Jin, C. J. Ma and S. J. Park, Mater. Sci. Eng A. 528 (2011) 8517-8522. https://doi.org/10.1016/j.msea.2011.08.054
  18. C. H, Lin, C.S and Wang, Polymer. 42 (2001) 1869-1878. https://doi.org/10.1016/S0032-3861(00)00447-X
  19. C.A, Giudice and J.C. Benitez, Prog. Org. Coat. 42 (2001) 82-88. https://doi.org/10.1016/S0300-9440(01)00159-X
  20. B.K. Kandola, A.R. Horrocks, P. Myler and D. Blair, J. Appl. Polym. Sci. 88 (2003) 2511-2521. https://doi.org/10.1002/app.11909
  21. S.H. Liao, P.L. Liu, M.C. Hsiao, C.C. Teng, C.A. Wang and M.D. Ger, Ind. Eng. Chem. Res. 51 (2012) 4573-4581. https://doi.org/10.1021/ie2026647
  22. X. Wang, L. Song, W. Pornwannchai, Y. Hu and B. Kandola, Composites: Part A. 53 (2013) 88-96. https://doi.org/10.1016/j.compositesa.2013.05.017
  23. Z. Wang, P. Wei, Y. Qian and J. Liu, Composites: Part B. 60 (2014) 341-349. https://doi.org/10.1016/j.compositesb.2013.12.033
  24. A.P. Kumar, D. Depan, N.S. Tomer and R.P. Singh, Prog. Polym. Sci. 34 (2009) 479-515. https://doi.org/10.1016/j.progpolymsci.2009.01.002
  25. T.D. Haparachchci and T. Peijs, eXPRESS Polymer Letters. 3 (2009) 743-751. https://doi.org/10.3144/expresspolymlett.2009.92