References
- A. Mohan and S. Poobal, "Crack detection using image processing: A critical review and analysis", Alexandria Engineering Journal, Vol. 57, No. 2, pp. 787-798, Jun. 2018. https://doi.org/10.1016/j.aej.2017.01.020
- O. Ronneberger, P. Fischer, and T. Brox, "U-Nnet: Convolutional networks for biomedical image segmentation", Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, Springer, LNCS, Vol. 9351, pp. 234-241, May 2015.
- P. Liskowski and K. Krawiec, "Segmenting retinal blood vessels with deep neural networks", IEEE Trans Med. Imag., Vol. 35, No. 11, pp. 2369-2380, Nov. 2016. https://doi.org/10.1109/TMI.2016.2546227
- V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE Trans. Pattern Anal. Mach. Intell, Vol. 39, No. 12, pp. 2481-2495, Dec. 2017. https://doi.org/10.1109/TPAMI.2016.2644615
- H. Zhao, G. Qin, and X. Wang, "Improvement of canny algorithm based on pavement edge detection", Int. Congress on Image and Signal Processing, Vol. 2, pp. 964-967, Oct. 2010.
- H. Oliveira and P. L. Correia, "Automatic road crack segmentation using entropy and image dynamic thresholding", European Signal Processing Conference, Glasgow, UK, pp. 622-626, Aug. 2009.
- T. Yamaguchi and S. Hashimoto, "Fast crack detection method for large-size concrete surface images using percolation-based image processing", J. Machine Vision and Applications, Vol. 21, No. 5, pp. 797-809, Aug. 2010. https://doi.org/10.1007/s00138-009-0189-8
- Y. Hu and C. Zhao, "A novel LBP based methods for pavement crack detection", Journal of Pattern Recognition Research, Vol. 5, No. 1, pp. 140-147, Jan. 2010. https://doi.org/10.13176/11.167
- R. S. Lim, H. M. La, Z. Shan, and W. Sheng, "Developing a crack inspection robot for bridge maintenance", IEEE Int. Conf. on Robotics and Automation, ICRA 2011, Shanghai, China, pp. 6288-6293, May 2011.
- R. S. Lim, H. M. La, and W. Sheng, "A robotic crack inspection and mapping system for bridge deck maintenance", IEEE Trans. Autom. Sci. Eng., Vol. 11, No. 2, pp. 367-378, Apr. 2014. https://doi.org/10.1109/TASE.2013.2294687
- T. S. Nguyen, S. Begot, F. Duculty, and M. Avila, "Free-form anisotropy: A new method for crack detection on pavement surface images", IEEE Int. Conf. on Image Processing, ICIP 2011, Brussels, Belgium, pp. 1069-1072, Sep. 2011.
- M. Avila, S. Begot, F. Duculty, and T.S. Nguyen, "2D image based road pavement crack detection by calculating minimal paths and dynamic programming", IEEE Int. Conf. on Image Processing, ICIP 2014, Paris, France, pp. 783-787, Oct. 2014.
- R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, "A new minimal path selection algorithm for automatic crack detection on pavement images", IEEE Int. Conf. on Image Processing, ICIP 2014, Paris, France, pp. 788-792, Oct. 2014.
- R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, "Automatic crack detection on two-dimensional pavement images: An algorithm based on minimal path selection", IEEE Trans. Intell. Transp. Syst., Vol. 17, No. 10, pp. 2718-2729, Oct. 2016. https://doi.org/10.1109/TITS.2015.2477675
- V. Kaul, A. Yezzi, and Y. Tsai, "Detecting curves with unknown endpoints and arbitrary topology using minimal paths", IEEE Trans. Pattern Anal. Mach. Intell, Vol. 34, No. 10, pp. 1952-1965, Oct. 2012. https://doi.org/10.1109/TPAMI.2011.267
- Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, "Cracktree: Automatic crack detection from pavement images", Pattern Recognition Letters, Vol. 33, No. 3, pp. 227-238, Feb. 2012. https://doi.org/10.1016/j.patrec.2011.11.004
- H. Li, D. Song, Y. Liu, and B. Li, "Automatic pavement crack detection by multi-scale image fusion", IEEE Transactions on Intelligent Transportation Systems, Vol. 20, No. 6, pp. 2025-2036, Jun. 2019. https://doi.org/10.1109/tits.2018.2856928
- H. Oliveira and P. L. Correia, "Automatic road crack detection and characterization", IEEE Trans. Intell. Transp. Syst., Vol. 14, No. 1, pp. 155-168, Mar. 2013. https://doi.org/10.1109/TITS.2012.2208630
- H. Oliveira and P. L. Correia, "CrackIT - an image processing toolbox for crack detection and characterization", IEEE Int. Conf. on Image Processing, ICIP 2014, Paris, France, pp. 798-802, Oct. 2014.
- Y. Hu, C. Zhao, and H. Wang, "Automatic pavement crack detection using texture and shape descriptors", Int. J. IETE Technical Review, Vol. 27, No. 5, pp. 398-405, Sep. 2010. https://doi.org/10.4103/0256-4602.62225
- K. Fernandes and L. Ciobanu, "Pavement pathologies classification using graph-based features", IEEE Int. Conf. on Image Processing, ICIP 2014, Paris, France, pp. 793-797, Oct. 2014.
- D. Ai, G. Jiang, L. Siew Kei, and C. Li, "Automatic pixellevel pavement crack detection using information of multi-scale neighborhoods", IEEE Access, Vol. 6, pp. 24452-24463, Apr. 2018. https://doi.org/10.1109/ACCESS.2018.2829347
- Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, "Automatic road crack detection using random structured forests", IEEE Trans. Intell. Transp. Syst., Vol. 17, No. 12, pp. 3434-3445, Dec. 2016. https://doi.org/10.1109/TITS.2016.2552248
- A. Krizhevsky, I. Sutskever, and G.E. Hinton, "ImageNet classification with deep convolutional neural networks", Int. Conf. on Neural Information Processing Systems, NIPS 2012, Vol. 1, pp. 1097-1105, Dec. 2012.
- L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, "Road crack detection using deep convolutional neural network", IEEE Int. Conf. on Image Processing, ICIP 2016, Phoenix, AZ, USA, pp. 3708-3712, Sep. 2016.
- Y. J. Cha, W. Choi, and O. Buyukozturk, "Deep learning-based crack damage detection using convolutional neural networks", Computer-Aided Civil and Infrastructure Engineering, Vol. 32, No. 5, pp. 361-378, May 2017. https://doi.org/10.1111/mice.12263
- K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and A. Agrawal, "Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection", Int. J. Construction and Building Materials, Vol. 157, pp. 322-330, Dec. 2017. https://doi.org/10.1016/j.conbuildmat.2017.09.110
- Z. Fan, Y. Wu, J. Lu, and W. Li, "Automatic pavement crack detection based on structured prediction with the convolutional neural network", CoRR, arXiv:1802.02208v1 [cs.CV] 1 Feb. 2018.
- Z. Tong, J. Gao, A. Sha, L. Hu, and S. Li, "Convolutional neural network for asphalt pavement surface texture analysis", Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 12, pp. 1056-1072, Dec. 2018. https://doi.org/10.1111/mice.12406
- A. Zhang, K. C. P. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu, J. Q. Li, and C. Chen, "Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-learning network", Computer-Aided Civil and Infrastructure Engineering, Vol. 32, No. 10, pp. 805-819, Oct. 2017. https://doi.org/10.1111/mice.12297
- A. Zhang, K. C. P. Wang, Y. Fei, Y. Liu, C. Chen, G. Yang, J. Q. Li, E. Yang, and S. Qiu, "Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network", Computer-Aided Civil and Infrastructure Engineering, Vol. 34, No. 3, pp. 213-229, Mar. 2019. https://doi.org/10.1111/mice.12409
- X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, "Automatic pixel-level crack detection and measurement using fully convolutional network", Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 12, pp. 1090-1109, Aug. 2018. https://doi.org/10.1111/mice.12412
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition", CoRR, Sep. 2014.
- K. Zuiderveld, "Contrast Limited Adaptive Histogram Equalization", Academic Press Professional, Inc., Graphics gems IV, San Diego, CA, USA, pp. 474-485, 1994.
- V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines", Int. Conf. on Machine Learning, ICML 2010, Haifa, Israel, pp. 807-814, Jun. 2010.
- D. C. Lee and B. J Park, "Comparison of deep learning activation functions for performance improvement of a 2D shooting game learning agent", Journal of IIBC, Vol. 19, No. 2, pp. 135-141, Apr. 2019.
- S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", Int. Conf. on Machine Learning, ICML 2015, Lille, France, Vol. 37, pp. 448-456, Jul. 2015.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting", Journal of Machine Learning Research, Vol. 15, No. 1, pp. 1929-1958, Jan. 2014.