Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion

  • Hwang, Jong Ha (Department of Mineral Resources & Energy Engineering, Chonbuk National University) ;
  • Lee, Ki-Tae (Division of Advanced Materials Engineering, Chonbuk National University)
  • Published : 2019.02.01

Abstract

Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology whose efficiency and cost primarily relies on the oxygen carrier materials used. In this paper, gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) was added as a promoter to improve the oxygen transfer rate of MgMnO3-δ oxygen carrier materials. Increasing GDC content significantly increased the oxygen transfer rate of MgMnO3-δ-GDC composites for the reduction reaction due to an increase in the surface adsorption of CH4 via oxygen vacancies formed on the surface of the GDC. On the other hand, the oxygen transfer rate for the oxidation reaction decreased linearly with increasing GDC content due to the oxygen storage ability of GDC. Adsorbed oxygen molecules preferentially insert themselves into oxygen vacancies of the GDC lattice rather than reacting with (Mg,Mn)O to form MgMnO3-δ during the oxidation reaction.

Keywords

References

  1. BP Statistical Review of World Energy (2017) .
  2. Q. Wang, X. Chen, A.N. Jha, and H. Rogers, Renew. Sust. Energ. Rev. 30 (2014) 1-28. https://doi.org/10.1016/j.rser.2013.08.065
  3. International Energy Outlook (2017) .
  4. IPCC, in 2014: Climate Change 2014: Synthesis Report, 2015, edited by R.K. Pachauri, and L.A. Meyer, Intergovernmental Panel on Climate Change Press (2015) p.151.
  5. S.A. Rackley, in Carbon capture and storage second edition, Butterworth-Heinemann Press (2017) p.22.
  6. Committee on America's Energy Future, in America's Energy Future: technology and transformation, The National Academies Press (2009) p.431.
  7. S. Mukherjee, P. Kumar, A. Yang, P. Fennell, J. Environ. Chem. Eng. 3 (2015) 2104-2114. https://doi.org/10.1016/j.jece.2015.07.018
  8. M. Ishida, H. Jin, Ind. Eng. Chem. Res. 35 (1996) 2469-2472. https://doi.org/10.1021/ie950680s
  9. J. Ma, X. Tian, H. Zhao, S. Bhattacharya, S. Rajendran, C. Zheng, Energy Fuels 31 (2017) 1896-1903. https://doi.org/10.1021/acs.energyfuels.6b02101
  10. B.S. Kwak, N.-K. Park, S.O. Ryu, J.-I. Baek, H.-J. Ryu, M. Kang, Chem. Eng. 309 (2017) 617-627. https://doi.org/10.1016/j.cej.2016.10.040
  11. M.M. Tijani, A. Aqsha, N. Mahinpey, Energy 138 (2017) 873-882. https://doi.org/10.1016/j.energy.2017.07.100
  12. B. Wang, C. Gao, W. Wang, H. Zhao, C. Zheng, J. Environ. Sci. 26 (2014) 1062-1070. https://doi.org/10.1016/S1001-0742(13)60546-X
  13. L.F. de Diego, A. Abad, A. Cabello, P. Gayan, F. Garcia-Labiano, J. Adanez, Ind. Eng. Chem. Res. 53 (2014) 87-103. https://doi.org/10.1021/ie4015765
  14. S. Sajen, S.K. Singh, P. Mungse, S. Rayalu, K. Watanabe, G. Saravanan, N. Labhasetwar, Energy Fuels 30 (2016) 7596-7603. https://doi.org/10.1021/acs.energyfuels.6b01433
  15. J.H. Hwang, J.I. Baek, H.J. Ryu, J.M. Sohn, K.T. Lee, Fuel 231 (2018) 290-296. https://doi.org/10.1016/j.fuel.2018.05.111
  16. I. Adanez-Rubio, A. Abad, P. Gayan, F. Garcia-Labiano, L.F. de Diego, J. Adanez, Appl. Energy 208 (2017) 561-570. https://doi.org/10.1016/j.apenergy.2017.09.098
  17. Y.M. Choi, H. Abernathy, H.-T. Chen, M.C. Lin, M. Liu, Chem. Phys. Chem. 7 (2006) 1957-1963. https://doi.org/10.1002/cphc.200600190
  18. C. Sun, H. Li, L. Chen, Energy Environ. Sci. 5 (2012) 8475-8505. https://doi.org/10.1039/c2ee22310d
  19. R.P. Kusy, J. Appl. Phys. 48 (1977) 5301-5305. https://doi.org/10.1063/1.323560