DOI QR코드

DOI QR Code

Lattice Deformation and Improvement Oxidation Resistance of Ti-6Al-4V Alloy Powders Prepared by Hydrogen Added Argon Heat Treatment

수소 첨가 열처리에 따른 Ti-6Al-4V 합금 분말의 격자 변형 및 내산화성 향상

  • Cho, Gye-Hoon (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Oh, Jung-Min (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Lim, Jae-Won (Division of Advanced Materials Engineering, Chonbuk National University)
  • 조계훈 (전북대학교 신소재공학부) ;
  • 오정민 (전북대학교 신소재공학부) ;
  • 임재원 (전북대학교 신소재공학부)
  • Received : 2019.04.15
  • Accepted : 2019.04.26
  • Published : 2019.04.28

Abstract

In the present work, a new hydrogen added argon heat treatment process that prevents the formation of hydrides and eliminates the dehydrogenation step, is developed. Dissolved hydrogen has a good effect on sintering properties such as oxidation resistance and density of greens. This process can also reduce costs and processing time. In the experiment, commercially available Ti-6Al-4V powders are used. The powders are annealed using tube furnace in an argon atmosphere at $700^{\circ}C$ and $900^{\circ}C$ for 120 min. Hydrogen was injected temporarily during argon annealing to dissolve hydrogen, and a dehydrogenation process was performed simultaneously under an argon-only atmosphere. Without hydride formation, hydrogen was dissolved in the Ti-6Al-4V powder by X-ray diffraction and gas analysis. Hydrogen is first solubilized on the beta phase and expanded the beta phases' cell volume. TGA analysis was carried out to evaluate the oxidation resistance, and it is confirmed that hydrogen-dissolved Ti-6Al-4V powders improves oxidation resistance more than raw materials.

Keywords

References

  1. J. S. Choe, D. H. Lee, G. S. Choi, D. S. Kil, C. Y. Suh, W. B. Kim and H. Ha: Kor. J. Mater. Res., 10 (2000) 464.
  2. L. Mei, C. Wang, Y. Wei, S. Xiao and Y. Chen: Int. J. Hydrogen Energy, 43 (2018) 7102. https://doi.org/10.1016/j.ijhydene.2018.02.114
  3. P. Sun, Z. Z. Fang, M. Koopman: Adv Eng Mater., 15 (2013) 1007. https://doi.org/10.1002/adem.201300017
  4. W. B. Kim, G. S. Choi, C. Y. Suh, D. S. Kil and H. Ha: Kor. J. Mater. Res., 9 (1999) 282.
  5. J. M. Oh, K. H. Heo, W. B. Kim, G. S. Choi and J. W. Lim: Mater Trans., 54 (2013) 119. https://doi.org/10.2320/matertrans.M2012304
  6. D. W. Lee, H. S. Lee, J. H. Park, S. M. Shin and J. P. Wang: Procedia Manuf., 2 (2015) 550. https://doi.org/10.1016/j.promfg.2015.07.095
  7. Z. Z. Fang, P. Sun and H. Wang: Adv Eng Mater., 14 (2012) 383. https://doi.org/10.1002/adem.201100269
  8. J. G. Ku, J. M. Oh, H. Kwon and J. W. Lim: Int. J. Hydrogen Energy, 42 (2017) 2139. https://doi.org/10.1016/j.ijhydene.2016.09.004
  9. G. S. Shin, Y. T. Hyun, N. K. Park, Y. H. Park and D. G. Lee: J. Korean Powder Metall. Inst., 24 (2017) 235. https://doi.org/10.4150/KPMI.2017.24.3.235
  10. R. L. Coble: J. Am. Ceram. Soc., 45 (1962) 123. https://doi.org/10.1111/j.1151-2916.1962.tb11099.x
  11. T. Zhu and M. Li: Mater Charact., 62 (2011) 724. https://doi.org/10.1016/j.matchar.2011.04.019
  12. O. N. Senkov, B. C. Chakoumakos, J. J. Jonas and F. H. Froes: Mater. Res Bull., 36 (2001) 1431. https://doi.org/10.1016/S0025-5408(01)00604-3
  13. J. I. Qazi, J. Rahim, F. H. Fores, O. N. Senkov and A. Genc: Metall. Mater. Trans. A, 32 (2001) 2453. https://doi.org/10.1007/s11661-001-0035-8
  14. P. Sun, Z. Z. Fang, M. Koopman, J. Paramore, K. S. R. Chandran, Y. Ren and J. Lu: Acta Mater., 84 (2015) 29. https://doi.org/10.1016/j.actamat.2014.10.045