DOI QR코드

DOI QR Code

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Tan, Xiaohui (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Wang, Xue (Gaoyou Architectural Design Institute) ;
  • Du, Linfeng (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Sun, Zhihao (School of Resources and Environmental Engineering, Hefei University of Technology)
  • 투고 : 2018.11.01
  • 심사 : 2019.03.17
  • 발행 : 2019.04.30

초록

Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation

참고문헌

  1. Babu, G.L.S. and Murthy, D.S. (2005), "Reliability analysis of unsaturated soil slopes", J. Geotech. Geoenviron. Eng., 131(11), 1423-1428. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1423)
  2. Beran, M. (1968), Statistical Continuum Theories, Interscience Publishers, New York, U.S.A.
  3. Berryman, J.G. (1985), "Measurement of spatial correlation functions using image processing techniques", J. Appl. Phys., 57(7), 2374-2384. https://doi.org/10.1063/1.334346
  4. Botros, F.E., Harter, T., Onsoy, Y.S., Tuli, A. and Hopmans, J.W. (2009), "Spatial variability of hydraulic properties and sediment characteristics in a deep alluvial unsaturated zone", Vadose Zone J., 8(2), 276-289. https://doi.org/10.2136/vzj2008.0087
  5. Chan, C.L. and Low, B.K. (2012), "Practical second-order reliability analysis applied to foundation engineering", Int. J. Numer. Anal. Met., 36(11), 1387-1409. https://doi.org/10.1002/nag.1057
  6. Cornell, C.A. (1971), "First-order uncertainy analysis of soils deformation and stability", Proceedings of the International Conference on Application of Statistics and Probability in Soil and Structural Engineering, Hong Kong, China, September.
  7. Corson, P.B. (1974), "Correlation functions for predicting properties of heterogeneous materials I. Experimental measurements of spatial correlation functions in multiphase solids", J. Appl. Phys., 45(7), 3159-3170. https://doi.org/10.1063/1.1663741
  8. Degroot, D.J. (1996), "Analyzing spatial variability of in-situ soil properties", Geotech. Sp. Publ., 58, 210-238.
  9. Degroot, D.J. and Baecher, G.B. (1993), "Estimating autocovariance of in-situ soil properties", J. Geotech. Eng., 119(1), 147-166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)
  10. Falchetto, A.C., Moon, K.H. and Wistuba, M.P. (2014). "Microstructural analysis and rheological modeling of asphalt mixtures containing recycled asphalt materials", Materials, 7(9), 6254-6280. https://doi.org/10.3390/ma7096254
  11. Firouzianbandpey S., Griffiths D.V., Ibsen L.B. and Andersen L.V. (2014), "Spatial correlation length of normalized cone data in sand: Case study in the north of Denmark", Can. Geotech. J., 51(8), 844-857. https://doi.org/10.1139/cgj-2013-0294
  12. Griffiths, D.V., Paiboon, J., Huang, J. and Fenton, G.A. (2012), "Homogenization of geomaterials containing voids by random fields and finite elements", Int. J. Solids Struct., 49(14), 2006-2014. https://doi.org/10.1016/j.ijsolstr.2012.04.006
  13. He, X.Y and Luo, L.S. (1997), "A priori derivation of the lattice Boltzmann equation", Phys. Rev. E, 55(6), R6333-R6336. https://doi.org/10.1103/PhysRevE.55.R6333
  14. Hopmans, J.W., Schukking, H. and Torfs, P.J.J.F. (1988), "Two-dimensional steady state unsaturated water flow in heterogeneous soils with autocorrelated soil hydraulic properties", Water Resour. Res., 24(12), 2005-2017. https://doi.org/10.1029/WR024i012p02005
  15. Huang, G. (2002), "Spatial variability of unsaturated flow parameters: Field study", Trans. Chin. Soc. Agricult. Eng., 18(5), 73-78. https://doi.org/10.3321/j.issn:1002-6819.2002.05.014
  16. Jaksa, M.B., Brooker, P.I. and Kaggwa, W.S. (1997), "Inaccuracies associated with estimating random measurement errors", J. Geotech. Geoenviron. Eng., 123(5), 393-401. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393)
  17. Kulhawy, F.H. (1992), On the Evaluation of Static Soil Properties, in Stability and Performance of Slopes and Embankments II, New York, U.S.A.
  18. Lacasse, S. and Nadim, F (1997), "Uncertainties in characterizing soil properties", Publikasjon-Norges Geotekniske Institutt, 201, 49-75.
  19. Li, H.L., Chen, J.J. and Yang, J. (2009), "Fractal and statistical characteristics of pore structure for unconsolidated porous media", Geotech. Investigat. Survey., 37(10), 35-39 (in Chinese).
  20. Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483
  21. Moon, K.H., Falchetto, A.C. and Jeong, J.H. (2014), "Microstructural analysis of asphalt mixtures using digital image processing technique", Can. J. Civ. Eng., 41(1), 74-86. https://doi.org/10.1139/cjce-2013-0250
  22. Orr, T.L.L. (2017), "Defining and selecting characteristic values of geotechnical parameters for designs to Eurocode 7", Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 11(1), 103-115. https://doi.org/10.1080/17499518.2016.1235711
  23. Pilottim, M. (1998), "Generation of realistic porous media by grains sedimentation", Transport Porous Med., 33(3), 257-278. https://doi.org/10.1023/A:1006598029153
  24. Phoon, K.K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038
  25. Phoon, K.K. and Kulhawy, F.H. (1999), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/t99-039
  26. Phoon, K.K., Quek, S.T. and An, P. (2003), "Identification of statistically homogeneous soil layers using modified Bartlett statistics", J. Geotech. Geoenviron. Eng., 129(7), 649-659. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649)
  27. Salgado, R. and Kim, D. (2014), "Reliability analysis of load and resistance factor design of slopes", J. Geotech. Geoenviron. Eng., 140(1), 57-73. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000978
  28. Srivastava, A. and Babu, G.L.S. (2011), "Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile", Geomech. Eng., 3(3), 169-188. https://doi.org/10.12989/gae.2011.3.3.169
  29. Stuedlein, A.W., Kramer, S.L., Arduino, P. and Holtz, R.D. (2012), "Geotechnical characterization and random field modeling of desiccated clay", J. Geotech. Geoenviron. Eng., 138(11), 1301-1313. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723
  30. Tacher, L., Perrochet, P. and Parriaux, A. (1997), "Generation of granular media", Transport Porous Med., 26(1), 99-107. https://doi.org/10.1023/A:1006541728723
  31. Takashi, A. (1997), "Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation", J. Comput. Phys., 131(1), 241-246 https://doi.org/10.1006/jcph.1996.5595
  32. Tan, X.H., Bi, W.H., Hou, X.L. and Wang, W. (2011), "Reliability analysis using radial basis function networks and support vector machines", Comput. Geotech., 38(2), 178-186. https://doi.org/10.1016/j.compgeo.2010.11.002
  33. Torquato, S. (2000), "Modeling of physical properties of composite materials", Int. J. Solids Struct., 37(1-2), 411-422. https://doi.org/10.1016/S0020-7683(99)00103-1
  34. Uzielli, M., Vannucchi, G. and Phoon, K.K. (2005), "Random field characterisation of stress-nomalised cone penetration testing parameters", Geotechnique, 55(1), 3-20. https://doi.org/10.1680/geot.2005.55.1.3
  35. Vanmarcke, E. (1983), Random Fields: Analysis and Synthesis, M.I.T. Press, Cambridge, London, U.K.
  36. Velasquez, R.A., Falchetto, A.C. and Marasteanu M.O. (2010), "From mixtures to binders: Can the inverse problem be solved?", Road Mater. Pavement, 11, 225-249.
  37. Velasquez, R.A., Marasteanu, M.O. and Labuz, J.F. (2010b), "Micro-structure characterization of asphalt mixtures with 2-and 3-point correlation functions", Road Mater. Pavement, 11(2), 251-272.
  38. Wang, M. and Pan, N. (2007), "Numerical analyses of effective dielectric constant of multiphase microporous media", J. Appl. Phys., 101(11), 114102. https://doi.org/10.1063/1.2743738
  39. Wang, M., Wang, J.K., Pan, N. and Chen, S. (2007), "Mesoscopic predictions of the effective thermal conductivity for microscale random porous media", Phys. Rev. E, 75(3), 036702. https://doi.org/10.1103/PhysRevE.75.036702
  40. Wang, X. (2017), "Microstructure research on spatial variability of clay in Hefei district", M.D. Dissertation, Hefei University of Technology, HeFei, China (in Chinese).
  41. Wu, T.H. (1974), "Uncertainty safety and decision in soil engineering", J. Geotech. Eng. Div., 100(3), 329-348. https://doi.org/10.1061/AJGEB6.0000026

피인용 문헌

  1. Reliability analysis of strip footing under rainfall using KL-FORM vol.24, pp.2, 2021, https://doi.org/10.12989/gae.2021.24.2.167
  2. Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing vol.24, pp.5, 2019, https://doi.org/10.12989/gae.2021.24.5.457