DOI QR코드

DOI QR Code

Experimental study on rock-concrete joints under cyclically diametrical compression

  • Chang, Xu (School of Civil Engineering, Henan Polytechnic University) ;
  • Guo, Tengfei (School of Civil Engineering, Henan Polytechnic University) ;
  • Lu, Jianyou (China Construction Shenzhen Decoration Co., Ltd) ;
  • Wang, Hui (School of Civil Engineering, Henan Polytechnic University)
  • Received : 2018.12.29
  • Accepted : 2019.03.17
  • Published : 2019.04.30

Abstract

This paper presents experimental results of rock-concrete bi-material discs under cyclically diametrical compression. It was found that both specimens under cyclical and static loading failed in three typical modes: shear crack, tensile crack and a combined mode of shear and wing crack. The failure modes transited gradually from the shear crack to the tensile one by increasing the interface angle between the interface and the loading direction. The cycle number and peak load increased by increasing the interface angle. The number of cycles and peak load increased with the interface groove depth and groove width, however, decreased with increase in interface groove spacing. The concrete strength can contribute more to the cycle number and peak load for specimens with a higher interface angle. Compared with the discs under static loading, the cyclically loaded discs had a lower peak load but a larger deformation. Finally, the effects of interface angle, interface asperity and concrete strength on the fatigue strength were also discussed.

Keywords

Acknowledgement

Supported by : National Natural Science Fund of China

References

  1. Andjeikovic, V., Pavlovic, N., Lazarevic, Z. and Nedovic, V. (2015), "Modelling of shear characteristics at the concrete-rock mass interface", Int. J. Rock Mech. Min. Sci., 76, 222-236. https://doi.org/10.1016/j.ijrmms.2015.03.024
  2. Asadi, M.S., Rasouli, V. and Barla, G. (2012), "A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures", Rock Mech. Rock Eng., 45(5), 649-75. https://doi.org/10.1007/s00603-012-0231-4
  3. Baak, S.H., Cho, G.C. and Song, K.I. (2017), "Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea", Geomech. Eng., 13(5), 881-892. https://doi.org/10.12989/GAE.2017.13.5.881
  4. Bagde, M.N. and Petros, V. (2005a), "Waveform effect on fatigue properties of intact sand stone in uniaxial cyclical loading", Rock Mech. Rock Eng., 38(3), 169-196 https://doi.org/10.1007/s00603-005-0045-8
  5. Bagde, M.N. and Petros, V. (2005b), "Fatigue properties of intact sand stone samples subjected to dynamic uniaxial cyclical loading", Int. J. Rock Mech. Min. Sci., 4(2), 237-250 https://doi.org/10.1016/j.ijrmms.2004.08.008
  6. Bagde, M.N. and Petros, V. (2009), "Fatigue and dynamic energy behaviour of rock subjected to cyclical loading", Int. J. Rock Mech. Min. Sci., 46, 200-209 https://doi.org/10.1016/j.ijrmms.2008.05.002
  7. Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
  8. Chang, X., Lu, J., Wang, S. and Wang, S. (2018), "Mechanical performances of rock-concrete bi-material disks under diametrical compression", Int. J. Rock Mech. Min. Sci., 104, 71-76 https://doi.org/10.1016/j.ijrmms.2018.02.008
  9. Dong, W., Wu, Z., Zhou, X., Wang, N. and Kastiukas, G. (2017), "An experimental study on crack propagation at rock-concrete interface using digital image correlation technique", Eng. Fract. Mech., 171, 50-63. https://doi.org/10.1016/j.engfracmech.2016.12.003
  10. Erarslan, N. and Williams, D.J. (2012a), "Mechanism of rock fatigue damage in terms of fracturing modes", Int. J. Fatigue, 43, 76-89. https://doi.org/10.1016/j.ijfatigue.2012.02.008
  11. Erarslan, N. and Williams, D.J. (2012b), "The damage mechanism of rock fatigue and its relationship to fracture toughness of rocks", Int. J. Rock Mech. Min. Sci., 56, 15-26 https://doi.org/10.1016/j.ijrmms.2012.07.015
  12. Fishman, Y.A. (2009a), "Features of shear failure of brittle materials and concrete structures on rock foundations", Int. J. Rock Mech. Min. Sci., 45(6), 976-92. https://doi.org/10.1016/j.ijrmms.2007.09.011
  13. Fishman, Y.A. (2009b), "Stability of concrete retaining structures and their interface with rock foundations", Int. J. Rock Mech. Min. Sci., 46(6), 957-966. https://doi.org/10.1016/j.ijrmms.2009.05.006
  14. Granrut, M., Simon, A., Dias, D. (2019), "Artificial neural networks for the interpretation of piezometric levels at the rockconcrete interface of arch dams", Eng. Struct., 178, 616-634. https://doi.org/10.1016/j.engstruct.2018.10.033
  15. ISRM (1978), "Suggested methods for determining the tensile strength of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
  16. Jayakody, S., Gallage, C. and Kumar, A. (2014), "Assessment of recycled concrete aggregates as a pavement material", Geomech. Eng., 6(3) 235-248. https://doi.org/10.12989/gae.2014.6.3.235
  17. Kodikara, J.K. (1989), "Shear behaviour of rock concrete joints and side resistance of piles in weak rock", Ph.D. Thesis, Monash University, Melbourne, Australia.
  18. Komurlu, E., Kesimal, A. and Hasanpour, R. (2015), "In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones", Geomech. Eng., 8(6), 783-799. https://doi.org/10.12989/gae.2015.8.6.783
  19. Liu, Y., Dai, F., Dong, L., Xu, N. and Feng, P. (2018), "Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters", Rock Mech. Rock Eng., 51(1), 47-68 https://doi.org/10.1007/s00603-017-1327-7
  20. Liu, Y., Dai, F., Fan, P., Xu, N. and Dong, L. (2017a), "Experimental investigation of the influences of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression", Rock Mech. Rock Eng., 50(6), 1453-1471 https://doi.org/10.1007/s00603-017-1190-6
  21. Liu, Y., Dai, F., Zhao, T. and Xu, N. (2017b), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50(1), 753-765
  22. Plesha, M.E. (1987), "Constitutive models for rock discontinuities with dilatancy and surface degradation", Int. J. Numer. Anal. Meth. Geomech., 11(4), 345-62. https://doi.org/10.1002/nag.1610110404
  23. Prost, C.L. (1998), "Jointing at rock contacts in cyclic loading", Int. J. Rock Mech. Min. Sci.Geomech. Abstr., 25(5), 263-272. https://doi.org/10.1016/0148-9062(88)90003-4
  24. Qiu, X., Plesha, M.E., Huang, X. and Haimson, B.C. (1993), "An investigation of the mechanics of rock joints-Part II Analytical investigation", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(3), 271-287. https://doi.org/10.1016/0148-9062(93)92730-E
  25. Sukplum, W. and Wannakao, L. (2016), "Influence of confining pressure on the mechanical behaviour of Phu Kradung sandstone", Int. J. Rock Mech. Min. Sci., 86, 48-54 https://doi.org/10.1016/j.ijrmms.2016.04.001
  26. Xu. J., Li, S., Tao, Y., Tang, X. and Wu, X. (2009), "Acoustic emission characteristic during rock fatigue damage and failure", Proc. Earth Planet. Sci., 1(1), 556-559. https://doi.org/10.1016/j.proeps.2009.09.088
  27. Yang, Z., Lo, S. and Di, C. (2001), "Reassessing the joint roughness coefficient (JRC) estimation using Z2", Rock Mech. Rock Eng., 34(3), 243-51 https://doi.org/10.1007/s006030170012
  28. Yang, Z.J. and Deeks, A.J. (2007), "Fully-automatic modeling of cohesive crack growth using a finite element-scaled boundary finite element coupled method", Eng. Fract. Mech., 74, 2547-73. https://doi.org/10.1016/j.engfracmech.2006.12.001
  29. Zhao, W., Chen, W. and Zhao, K. (2018), "Laboratory test on foamed concrete-rock joints in direct shear", Constr. Build. Mater., 173, 69-80. https://doi.org/10.1016/j.conbuildmat.2018.04.006
  30. Zhu, H.H., Yin, J.H., Dong, J.H. and Zhang, L. (2010), "Physical modelling of sliding failure of concrete gravity dam under overloading condition", Geomech. Eng., 2(2), 89-106. https://doi.org/10.12989/gae.2010.2.2.089