DOI QR코드

DOI QR Code

Fabrication and Characteristics of Non-Solvent Silica-Acryl Monomer Hybrid Sol for Optical Device

광학용 무용제 실리카-아크릴 모노머 하이브리드 졸 기반의 코팅액 제조 및 특성 평가

  • Kang, Woo Kyu (Department of Materials Engineering, Chungbuk National University) ;
  • Jang, Gun Eik (Department of Materials Engineering, Chungbuk National University)
  • Received : 2019.02.13
  • Accepted : 2019.03.11
  • Published : 2019.05.01

Abstract

A solvent free, highly concentrated silica-acryl monomer hybrid sol was synthesized using aqueous colloidal silica as a precursor. The effects of the silica particle size, type of surface treatment agent employed, and silica content on the formation of the hybrid sol were systematically studied. The optical and physical properties of the coating solution prepared using the hybrid sol were also characterized. The viscosity of the hybrid sol tended to decrease as the particle size of the silica and the molecular weight of the surface treatment agent increased. The PET substrate coated with MPTMS-Mix (mixture, 70 wt%) solution showed the highest surface hardness (6 H) and low surface roughness ($Ra=0.044{\mu}m$), which could be attributed to an increase in packing density caused by the infiltration of small particles into the pores formed between larger particles.

Keywords

JJJRCC_2019_v32n3_246_f0001.png 이미지

Fig. 1. Flow chart for preparation of hybrid coating sol.

JJJRCC_2019_v32n3_246_f0002.png 이미지

Fig. 2. Viscosities of hybrid sol as a function of particle size of silica. (a) Particle size of silica: 20 nm, (b) particle size of silica: 60 nm, and (c) particle size of silica: 90 nm.

JJJRCC_2019_v32n3_246_f0003.png 이미지

Fig. 3. Particle size distributions of hybrid sol with various surface treatmemt agent. (a) Particle size of silica: 20 nm, (b) particle size of silica: 60 nm, and (c) particle size of silica: 90 nm.

JJJRCC_2019_v32n3_246_f0004.png 이미지

Fig. 4. Photograph of colloidal silica and hybrid sol. (a) Colloidal silica and (b) non-solvent hybrid sol.

JJJRCC_2019_v32n3_246_f0005.png 이미지

Fig. 5. TG/DTG graph of MPT2070 hybrid sol.

JJJRCC_2019_v32n3_246_f0006.png 이미지

Fig. 6. FT-IR of TMPTA and hybrid sol.

JJJRCC_2019_v32n3_246_f0007.png 이미지

Fig. 7. Optical transmittance of silica hybrid coated on PET film in visible wavelength range.

JJJRCC_2019_v32n3_246_f0008.png 이미지

Fig. 8. 3D microscope photograph of silica hybrid coated on PET film. (a) MPTMS 2070, (b) MPTMS 6070, (c) MPTMS 9070, and (d) MPTMS-Mix 70.

Table 1. Transmittance of hybrid sol.

JJJRCC_2019_v32n3_246_t0001.png 이미지

Table 2. Pencil hardness and adhesion of silica hybrid coated on PET film.

JJJRCC_2019_v32n3_246_t0002.png 이미지

References

  1. M. Menning, P. W. Oliveira, and H. Schmidt, Thin Solid Films, 351, 99 (1999). https://doi.org/10.1016/S0040-6090(99)00335-1
  2. H. Schmidt, J. Non-Cryst. Solids, 178, 302 (1994). https://doi.org/10.1016/0022-3093(94)90299-2
  3. J. M. Urrega, M. C. Matias, V. Lorenzo, and M. U. de la Orden, Mater. Lett., 45, 293 (2000). https://doi.org/10.1016/S0167-577X(00)00120-8
  4. G. H. Hsiue, Y. L. Liu, and H. H. Liao, J. Polym. Sci., Part A: Polym. Chem., 39, 986 (2001). https://doi.org/10.1002/1099-0518(20010401)39:7<986::AID-POLA1074>3.0.CO;2-W
  5. G. Bonilla, M. Martinez, A. M. Mendoza, and J. M. Widmaier, Eur. Polym. J., 42, 2977 (2006). https://doi.org/10.1016/j.eurpolymj.2006.07.011
  6. T. H. Kim, L. W. Jang, D. C. Lee, H. J. Choi, and M. S. John, Macromol. Rapid Commun., 23, 191 (2002). https://doi.org/10.1002/1521-3927(20020201)23:3<191::AID-MARC191>3.0.CO;2-H
  7. C. Agashe, B. R. Marathe, M. G. Takwale, and V. G. Bhide, Thin Solid Films, 164, 261 (1988). [DOI: https://doi.org/10.1016/0040-6090(88)90146-0]
  8. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, Thin Solid Films, 351, 73 (1999). [DOI: https://doi.org/10.1016/s0040-6090(98)01780-5]
  9. S. K. Oh, Thesis, Preparation of UV-Curable Organic-Inorganic Hybrid Hard Coating Solutions by Sol-Gel Method, Kunyang University, Nonsan (2009).
  10. O. H. Park, Y. J. Eo, Y. K. Choi, and B. S. Bae, J. Sol-Gel Sci. Technol., 26, 235 (1999). https://doi.org/10.1023/A:1020703216503
  11. D. H. Son, Korea University of Technology and Education (2006).
  12. H. E. Bergna and W. O. Roberts, Surfactant Sci. Ser., 131, 139 (2006).
  13. Y. J. Ji, Y. J. Shin, Y. R. Shin, J. Y. Kim, Y. S. Yoon, and J. S. Shin, J. Adhesion Interface, 7, 10 (2006).
  14. Y. J. Eo, D. J. Kim, B. S. Bae, K. C. Song, T. Y. Lee, and S. W. Song, J. Sol-Gel Sci. Technol., 13, 409 (1998). https://doi.org/10.1023/A:1008665010016
  15. O. H. Park, Y. J. Eo, Y. K. Choi, and B. S. Bae, J. Sol-Gel Sci. Technol., 16, 235 (1999). [DOI: https://doi.org/10.1023/A:1008717219952]
  16. D. H. Son, D. S. Kim, S. H. Lee, S. H. Kim, G. D. Lee, and S. S. Park, Appl. Chem. Eng., 23, 53 (2012).
  17. S. K. Oh, J. S. Chung, B. S. Lee, and K. C. Song, Korean Chem. Eng. Res., 46, 274 (2008).
  18. ASTM D 3363, "Standard Test Methods for Measuring Adhesion by Tape Test", ASTM International.
  19. ASTM D 3359, "Standard Test Methods for Measuring Adhesion by Tape Test", ASTM International.