DOI QR코드

DOI QR Code

Fabrication and Performance Evaluation of Flat-Type Multilayer Piezoelectric Ceramic Ultrasonic Transmitter

평판형 적층 세라믹 초음파 압전 트랜스미터의 제조와 성능 평가

  • Na, Yong-hyeon (Optic & Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Min-seon (Optic & Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-ho (Optic & Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Optic & Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University) ;
  • Jeong, Young-hun (Optic & Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 나용현 (한국세라믹기술원 광전자부품소재센터) ;
  • 이민선 (한국세라믹기술원 광전자부품소재센터) ;
  • 조정호 (한국세라믹기술원 광전자부품소재센터) ;
  • 백종후 (한국세라믹기술원 광전자부품소재센터) ;
  • 이정우 (부산대학교 재료공학과) ;
  • 정영훈 (한국세라믹기술원 광전자부품소재센터)
  • Received : 2019.02.21
  • Accepted : 2019.03.05
  • Published : 2019.05.01

Abstract

A flat-type piezoelectric ceramic ultrasonic transmitter was successfully fabricated for application in acoustic devices with cone-free diaphragms. The transmitter, possessing a center frequency of 40.6 kHz, exhibited a higher displacement characteristic for a multilayer type compared with a single layer type. Surface roughness treatment of an Al elastic diaphragm influenced a slight increase (1.1 dB) in the sound pressure level (SPL) at $10V_{rms}$ due to the enlarged surface area. The fabricated multilayer piezoelectric ceramic ultrasonic transmitter showed increasing SPL with increasing input voltage, with a maximum SPL of approximately 123.6 dB at $10V_{rms}$. This implies a doubly increased SPL density of $3.6dB/mm^3$, superior to that of a commercial open-type transmitter with a cone.

Keywords

JJJRCC_2019_v32n3_207_f0001.png 이미지

Fig. 1. Schematic image of typical piezoelectric ultrasonic transmitter with a cone.

JJJRCC_2019_v32n3_207_f0002.png 이미지

Fig. 2. (a) Schematic image of the fabricated multilayer piezoelectric ceramic ultrasonic transmitter, (b) cross-sectional FE-SEM image of the piezoelectric film, (c) top (left) and side (right) view images of the fabricated piezoelectric ultrasonic transducer.

JJJRCC_2019_v32n3_207_f0003.png 이미지

Fig. 3. Experimental set up for measurement of acoustic properties of the piezoelectric ultrasonic transmitter.

JJJRCC_2019_v32n3_207_f0004.png 이미지

Fig. 4. (a) Displacement spectra at 5 Vrms of the ultrasonic transmitters with piezoelectric element of the single layer (top) and the multilayer (bottom) and (b) bending of the Al diaphragm at the resonant frequency for the multilayer piezoelectric ultrasonic transmitter.

JJJRCC_2019_v32n3_207_f0005.png 이미지

Fig. 5. (a) AFM topography images of the top surface and (b) measured roughness profiles of Al diaphragm before and after surface roughness treatment.

JJJRCC_2019_v32n3_207_f0006.png 이미지

Fig. 6. Impedance and phase angle characteristics of the ultrasonic transmitters for the piezoelectric ceramics with (a) a single layer and (b) multilayer from 30 kHz to 50 kHz.

JJJRCC_2019_v32n3_207_f0007.png 이미지

Fig. 7. (a) Frequency dependant sound pressure level of the ultrasonic transmitters for the piezoelectric ceramics with a single layer and multilayer and (b) variation of sound pressure level dependant on applied voltage for the surface roughness treated multilayer piezoelectric ultrasonic transmitter from 35 kHz to 45 kHz.

Table 1. Comparison of acoustic performance between the commercial ultrasonic piezoelectric transmitter and the fabricated flat-type multilayer piezoelectric ceramic ultrasonic transmitter in this work.

JJJRCC_2019_v32n3_207_t0001.png 이미지

References

  1. J. A. Gallego-Juarez, J. Phys. E: Sci. Instrum., 22, 804 (1989). [DOI: https://doi.org/10.1088/0022-3735/22/10/001]
  2. O. Mattiat, J. Acoust. Soc. Am., 25, 291 (1953). [DOI: https://doi.org/10.1121/1.1907035]
  3. Z. Wang, W. Zhu, H. Zhu, J. Miao, C. Chao, C. Zhao, and O. K. Tan, IEEE Trans. Ultrason. Eng., 52, 2289 (2005). [DOI: https://doi.org/10.1109/TUFFC.2005.1563271]
  4. K. B. Kim, D. K. Hsu, B. Ahn, Y. G. Kim, and D. J. Barnard, Ultrasonics, 50, 790 (2010). [DOI: https://doi.org/10.1016/j.ultras.2010.04.001]
  5. A. Baba, C. T. Searfass, and B. R. Tittmann, Appl. Phys. Lett., 97, 232901 (2010). [DOI: https://doi.org/10.1063/1.3524192]
  6. M.I.H. Yaacob, M. R. Arshad, and A. A. Manaf, Acoust. Phys., 57, 151 (2011). [DOI: https://doi.org/10.1134/S1063771011010180]
  7. J. Lee, S. Pyo, and Y. Roh, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 790 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.11.790]
  8. W. I. Liao, F. P. Hsiao, C. K. Chiu, and C. E. Ho, Appl. Sci., 9, 312 (2019). [DOI: https://doi.org/10.3390/app9020312]
  9. H. Cho and C. J. Lissenden, Struct. Health Monit., 11, 393 (2012). [DOI: https://doi.org/10.1177/1475921711430439]
  10. J. Kuroda, S. Minami, and Y. Oikawa, J. Acoust. Soc. Am., 140, 3087 (2016). [DOI: https://doi.org/10.1121/1.4969620]
  11. C. Miclea, C. Tanasoiu, A. Iuga, I. Spanulescu, C. F. Miclea, C. Plavitu, L. Amarande, M. Cioangher, L. Trupina, C. T. Miclea, and T. Tanasoiu, Proc. 2008 International Semiconductor Conference (IEEE, Sinaia, 2008) p. 185.
  12. A. Arevalo, D. Conchouso, D. Castro, J. Kosel, and I. G. Foulds, Proc. 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Sendai, 2016) p. 180.
  13. J. Mendoza-Lopez, S. Sanchez-Solano, and J. L. Huertas-Diaz, ISRN Mech. Eng., 2012, 8 pages (2012). [DOI: https://doi.org/10.5402/2012/635268]
  14. C. Hedberg, H. Gazisaeidi, K. Haller, and E. Mfoumou, Jpn. J. Appl. Phys., 46, 4908 (2007). [DOI: https://doi.org/10.1143/JJAP.46.4908]
  15. S. Sakai, Y. Shiozawa, and T. Toi, Acoust. Sci. Technol., 30, 404 (2009). [DOI: https://doi.org/10.1250/ast.30.404]
  16. J. Kuroda, Y. Oikawa, Y. Yamasaki, S. Sato, M. Komoda, and Y. Onishi, Acoust. Sci. Technol., 36, 385 (2015). [DOI: https://doi.org/10.1250/ast.36.385]
  17. J. Kuroda and Y. Oikawa, Acoust. Sci. Technol., 39, 1 (2018). [DOI: https://doi.org/10.1250/ast.39.1]
  18. K. Uchino, H. Negishi, and T. Hirose, Jpn. J. Appl. Phys., 28, 47 (1989). [DOI: https://doi.org/10.7567/JJAPS.28S2.47]
  19. S. Priya, D. Viehland, A. V. Carazo, J. Ryu, and K. Uchino, J. Appl. Phys., 90, 1469 (2001). [DOI: https://doi.org/10.1063/1.1381046]