DOI QR코드

DOI QR Code

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Seo, Dong-Ho (Research Group of Healthcare, Korea Food Research Institute) ;
  • Park, Ji-Hae (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Kim, Myo-Jung (Department of Food and Life Science, Inje University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2019.02.19
  • Accepted : 2019.03.20
  • Published : 2019.04.28

Abstract

${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Keywords

References

  1. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, et al. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87: 223-226. https://doi.org/10.1111/j.1399-3054.1993.tb00146.x
  2. Kaneda M, Mizutani K, Takahashi Y, Kurono G, Nishikawa Y. 1974. Lilioside A and B, two new glycerol glucosides isolated from Lilium longiflorum T hunb. Tetrahedron Lett. 15: 3937-3940. https://doi.org/10.1016/S0040-4039(01)92050-7
  3. Kaneda M, Mizutani K, Tanaka K. 1982. Lilioside C, a glycerol glucoside from Lilium lancifolium. Phytochemistry 21: 891-893. https://doi.org/10.1016/0031-9422(82)80087-3
  4. Curatolo W. 1987. The physical properties of glycolipids. Biochim. Biophys. Acta-Rev. 906: 111-136. https://doi.org/10.1016/0304-4157(87)90008-6
  5. Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1996. 1-O-, 2-O-and 3-O-${\beta}$-glycosyl-snglycerols: Structure-anti-tumor-promoting activity relationship. Bioorg. Med. Chem. Lett. 6: 1187-1190. https://doi.org/10.1016/0960-894X(96)00196-5
  6. Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1998. Inhibitory effects of fatty acid monoesters of 2-O-${\beta}$-D-glucosylglycerol on Epstein-Barr virus activation. Cancer Lett. 123: 83-86. https://doi.org/10.1016/S0304-3835(97)00410-2
  7. Colombo D, Compostella F, Ronchetti F, Scala A, Toma L, Tokuda H, et al. 1999. Chemoenzymatic synthesis and antitumor promoting activity of 6'-and 3-esters of 2-O-${\beta}$-D-glucosylglycerol. Bioorg. Med. Chem. 7: 1867-1871. https://doi.org/10.1016/S0968-0896(99)00137-6
  8. Murakami N, Imamura H, Sakakibara J, Yamada N. 1990. Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 38: 3497-3499. https://doi.org/10.1248/cpb.38.3497
  9. Shirahashi H, Murakami N, Watanabe M, Nagatsu A, Sakakibara J, Tokuda H, et al. 1993. Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 41: 1664-1666. https://doi.org/10.1248/cpb.41.1664
  10. Murakami A, Nakamura Y, Koshimizu K, Ohigashi H. 1995. Glyceroglycolipids from Citrus hystrix, a traditional herb in Thailand, potently inhibit the tumor-promoting activity of 12-O-tetradecanoylphorbol 13-acetate in mouse skin. J. Agric. Food Chem. 43: 2779-2783. https://doi.org/10.1021/jf00058a043
  11. Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, et al. 1995. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40: 1433-1437. https://doi.org/10.1016/0031-9422(95)00458-J
  12. Boltje TJ, Buskas T, Boons G-J. 2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1: 611-622. https://doi.org/10.1038/nchem.399
  13. Marinone Albini F, Murelli C, Patritti G, Rovati M. 1994. A simple synthesis of glucosyl glycerols. Synth. Commun. 24: 1651-1661. https://doi.org/10.1080/00397919408010167
  14. Wickberg B. 1958. Synthesis of 1-glyceritol D-galactopyranosides. Acta Chem. Scand. 12: 1187-1201. https://doi.org/10.3891/acta.chem.scand.12-1187
  15. Barstrom M, Bengtsson M, Blixt O, Norberg T. 2000. New derivatives of reducing oligosaccharides and their use in enzymatic reactions: efficient synthesis of sialyl Lewis a and sialyl dimeric Lewis x glycoconjugates. Carbohydr. Res. 328: 525-531. https://doi.org/10.1016/S0008-6215(00)00128-2
  16. Zeng X, Uzawa H. 2005. Convenient enzymatic synthesis of a p-nitrophenyl oligosaccharide series of sialyl N-acetyllactosamine, sialyl $Le^x$ and relevant compounds. Carbohydr. Res. 340: 2469-2475. https://doi.org/10.1016/j.carres.2005.08.019
  17. Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  18. Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R. 2003. Oligosaccharide synthesis by the hyperthermostable ${\beta}$-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microb. Technol. 33: 3-11. https://doi.org/10.1016/S0141-0229(03)00096-6
  19. Park N-Y, Baek N-I, Cha J, Lee S-B, Auh J-H, Park C-S. 2005. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae ${\beta}$-glycosidase. Carbohydr. Res. 340: 1089-1096. https://doi.org/10.1016/j.carres.2005.02.003
  20. Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. 2018. Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol. Adv. 36: 1540-1552. https://doi.org/10.1016/j.biotechadv.2018.06.010
  21. Jung D-H, Jung J-H, Seo D-H, Ha S-J, Kweon D-K, Park C-S. 2013. One-pot bioconversion of sucrose to trehalose using enzymatic sequential reactions in combined cross-linked enzyme aggregates. Bioresour. Technol. 130: 801-804. https://doi.org/10.1016/j.biortech.2012.12.162
  22. Cho H-K, Kim H-H, Seo D-H, Jung J-H, Park J-H, Baek N-I, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
  23. Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  24. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, et al. 1999. Structure of raw starch-digesting Bacillus cereus ${\beta}$-amylase complexed with maltose. Biochemistry. 38: 7050-7061. https://doi.org/10.1021/bi9829377
  25. Seo D-H, Jung J-H, Ha S-J, Cho H-K, Jung D-H, Kim T-J, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to ${\alpha}$-arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197. https://doi.org/10.1007/s00253-012-3905-7
  26. De Roode M, Peters SW, Franssen MC, Van Padt AD, De Groot A, Boom RM. 2001. Optimization of production and downstream processing of the almond ${\beta}$-glucosidase-mediated glucosylation of glycerol. Biotechnol. Bioeng. 72: 568-572. https://doi.org/10.1002/1097-0290(20010305)72:5<568::AID-BIT1021>3.0.CO;2-J
  27. Hinz SW, Verhoef R, Schols HA, Vincken J-P, Voragen AG. 2005. Type I arabinogalactan contains ${\beta}$-D-Galp-(1${\rightarrow}$3)-${\beta}$-D-Galp structural elements. Carbohydr. Res. 340: 2135-2143. https://doi.org/10.1016/j.carres.2005.07.003
  28. Jeong J-W, Seo D-H, Jung J-H, Park J-H, Baek N-I, Kim M-J, et al. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917. https://doi.org/10.1007/s12010-014-0889-z
  29. Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, et al. 2001. Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001: 875-896. https://doi.org/10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-R
  30. Seo S, Tomita Y, Tori K, Yoshimura Y. 1978. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 100: 3331-3339. https://doi.org/10.1021/ja00479a014
  31. Suhr R, Scheel O, Thiem J. 1998. Synthesis of glycosyl glycerols and related glycolipids. J. Carbohydr. Chem. 17: 937-968. https://doi.org/10.1080/07328309808007465

Cited by

  1. Enzymatic synthesis of novel fructosylated compounds by Ffase from Schwanniomyces occidentalis in green solvents vol.11, pp.39, 2019, https://doi.org/10.1039/d1ra01391b
  2. New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-86568-6