References
- F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
- P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.
- M. El Berrag and A. Tajmouati, On subspace-supercyclic semigroup, Commun. Korean Math. Soc. 33 (2018), no. 1, 157-164. https://doi.org/10.4134/CKMS.C170047
- N. S. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted shifts, Proc. Amer. Math. Soc. 131 (2003), no. 2, 479-485. https://doi.org/10.1090/S0002-9939-02-06537-1
- N. S. Feldman, V. G. Miller, and T. L. Miller, Hypercyclic and supercyclic cohyponormal operators, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 303-328.
- R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
- K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
- H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1973/74), 557-565. https://doi.org/10.1512/iumj.1974.23.23046
- C. Kitai, Invariant Closed Sets for Linear Operators, ProQuest LLC, Ann Arbor, MI, 1982.
- F. Leon-Saavedra, Operators with hypercyclic Cesaro means, Studia Math. 152 (2002), no. 3, 201-215. https://doi.org/10.4064/sm152-3-1
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. https://doi.org/10.4064/sm-32-1-17-22
- H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. https://doi.org/10.1090/S0002-9947-1995-1249890-6
- H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55-74. https://doi.org/10.4064/sm-135-1-55-74
- A. Tajmouati and M. El berrag, Some results on hypercyclicity of tuple of operators, Ital. J. Pure Appl. Math. No. 35 (2015), 487-492.