참고문헌
- D. Baleanu, P. Agarwal, R. K. Parmar, M. M. Alquarashi, and S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 2914-2924. https://doi.org/10.22436/jnsa.010.06.06
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and con uent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357-385. https://doi.org/10.5831/HMJ.2014.36.2.357
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
- V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Computers & Mathematics with Applications 59 (2010), 1885-1895. https://doi.org/10.1016/j.camwa.2009.08.025
- I. O. Kiymaz, A. Cetinkaya, and P. Agarwal, An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3611-3621. https://doi.org/10.22436/jnsa.009.06.14
- M.-J. Luo, G. V. Milovanovic, and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651. https://doi.org/10.1016/j.amc.2014.09.110
- K. Mehrez and Z. Tomovski, On a new (p,q)-Mathieu type power series and its applications, to appear in Appl. Anal. Discr. Math. Vol 13 (2019).
- S. Mubeen, G. Rahman, K. S. Nisar, J. Choi, and M. Arshad, An extended beta function and its properties, Far East J. Math. Sci. 102 (2017), 1545-1557.
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010.
- M. A. Ozerslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9-10, 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
- M. A. Ozerslan and E. Ozergin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
- R. K. Parmar, Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math. 12 (2014), no. 3-4, 217-228.
- T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
- G. Rahman, S. Mubeen, K. S. Nisar, and J. Choi, Extended special functions and fractional integral operator via an extended Beta function, Submitted.
- E. D. Rainville, Elementary Differential Equations, The Macmillan Company, New York, 1958.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
- M. Shadab, S. Jabee, and J. Choi, An extension of beta function and its application, Far East J. Math. Sci. 103 (2018), no. 1, 235-251. https://doi.org/10.17654/ms103010235
- S. C. Sharma and M. Devi, Certain properties of extended Wright generalized hypergeometric function, Annals of Pure and Appl. Math. 9 (2015), no. 1, 45-51.
- H. M. Srivastava, R. K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), 238-258. https://doi.org/10.3390/axioms1030238