DOI QR코드

DOI QR Code

ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR

  • Nisar, Kottakkaran Sooppy (Department of Mathematics College of Arts and Science-Wadi Aldawaser 11991, Prince Sattam bin Abdulaziz University) ;
  • Rahman, Gauhar (Department of Mathematics International Islamic University) ;
  • Tomovski, Zivorad (University "St. Cyril and Methodius" Faculty of Natural Sciences and Mathematics Institute of Mathematics)
  • 투고 : 2018.04.06
  • 심사 : 2018.06.01
  • 발행 : 2019.04.30

초록

The main aim of this present paper is to present a new extension of the fractional derivative operator by using the extension of beta function recently defined by Shadab et al. [19]. Moreover, we establish some results related to the newly defined modified fractional derivative operator such as Mellin transform and relations to extended hypergeometric and Appell's function via generating functions.

키워드

참고문헌

  1. D. Baleanu, P. Agarwal, R. K. Parmar, M. M. Alquarashi, and S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 2914-2924. https://doi.org/10.22436/jnsa.010.06.06
  2. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  3. M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and con uent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  4. J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357-385. https://doi.org/10.5831/HMJ.2014.36.2.357
  5. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
  6. V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Computers & Mathematics with Applications 59 (2010), 1885-1895. https://doi.org/10.1016/j.camwa.2009.08.025
  7. I. O. Kiymaz, A. Cetinkaya, and P. Agarwal, An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3611-3621. https://doi.org/10.22436/jnsa.009.06.14
  8. M.-J. Luo, G. V. Milovanovic, and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651. https://doi.org/10.1016/j.amc.2014.09.110
  9. K. Mehrez and Z. Tomovski, On a new (p,q)-Mathieu type power series and its applications, to appear in Appl. Anal. Discr. Math. Vol 13 (2019).
  10. S. Mubeen, G. Rahman, K. S. Nisar, J. Choi, and M. Arshad, An extended beta function and its properties, Far East J. Math. Sci. 102 (2017), 1545-1557.
  11. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010.
  12. M. A. Ozerslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9-10, 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
  13. M. A. Ozerslan and E. Ozergin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
  14. R. K. Parmar, Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math. 12 (2014), no. 3-4, 217-228.
  15. T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
  16. G. Rahman, S. Mubeen, K. S. Nisar, and J. Choi, Extended special functions and fractional integral operator via an extended Beta function, Submitted.
  17. E. D. Rainville, Elementary Differential Equations, The Macmillan Company, New York, 1958.
  18. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
  19. M. Shadab, S. Jabee, and J. Choi, An extension of beta function and its application, Far East J. Math. Sci. 103 (2018), no. 1, 235-251. https://doi.org/10.17654/ms103010235
  20. S. C. Sharma and M. Devi, Certain properties of extended Wright generalized hypergeometric function, Annals of Pure and Appl. Math. 9 (2015), no. 1, 45-51.
  21. H. M. Srivastava, R. K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), 238-258. https://doi.org/10.3390/axioms1030238