References
- J. Y. Bae, I. B. Jung, and G. R. Exner, Criteria for positively quadratically hyponormal weighted shifts, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3287-3294. https://doi.org/10.1090/S0002-9939-02-06493-6
- S. Baek, G. Exner, I. B. Jung, and C. Li, On semi-cubically hyponormal weighted shifts with first two equal weights, Kyungpook Math. J. 56 (2016), no. 3, 899-910. https://doi.org/10.5666/KMJ.2016.56.3.899
- S. Baek, G. Exner, I. B. Jung, and C. Li, Semi-cubic hyponormality of weighted shifts with Stampfli recursive tail, Integral Equations Operator Theory 88 (2017), no. 2, 229-248. https://doi.org/10.1007/s00020-017-2373-y
- Y. B. Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37 (2000), no. 2, 347-352.
- R. E. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, in Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988), 69-91, Proc. Sympos. Pure Math., 51, Part 2, Amer. Math. Soc., Providence, RI, 1990.
- R. E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), no. 1, 49-66. https://doi.org/10.1007/BF01195292
- R. E. Curto, Polynomially hyponormal operators on Hilbert space, Rev. Un. Mat. Argentina 37 (1991), no. 1-2, 29-56 (1992).
- R. E. Curto and L. A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), no. 2, 202-246. https://doi.org/10.1007/BF01200218
- R. E. Curto and I. B. Jung, Quadratically hyponormal weighted shifts with two equal weights, Integral Equations Operator Theory 37 (2000), no. 2, 208-231. https://doi.org/10.1007/BF01192423
- R. E. Curto and W. Y. Lee, Solution of the quadratically hyponormal completion problem, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2479-2489. https://doi.org/10.1090/S0002-9939-03-07057-6
- R. E. Curto and M. Putinar, Existence of nonsubnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 373-378. https://doi.org/10.1090/S0273-0979-1991-16079-9
- R. E. Curto and M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993), no. 2, 480-497. https://doi.org/10.1006/jfan.1993.1101
- Y. Do, G. Exner, I. B. Jung, and C. Li, On semi-weakly n-hyponormal weighted shifts, Integral Equations Operator Theory 73 (2012), no. 1, 93-106. https://doi.org/10.1007/s00020-012-1960-1
- G. Exner, I. B. Jung, and D. Park, Some quadratically hyponormal weighted shifts, Integral Equations Operator Theory 60 (2008), no. 1, 13-36. https://doi.org/10.1007/s00020-007-1544-7
- P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125-134.
- I. B. Jung and S. S. Park, Quadratically hyponormal weighted shifts and their examples, Integral Equations Operator Theory 36 (2000), no. 4, 480-498. https://doi.org/10.1007/BF01232741
- I. B. Jung and S. S. Park, Cubically hyponormal weighted shifts and their examples, J. Math. Anal. Appl. 247 (2000), no. 2, 557-569. https://doi.org/10.1006/jmaa.2000.6879
- C. Li, M. Cho, and M. R. Lee, A note on cubically hyponormal weighted shifts, Bull. Korean Math. Soc. 51 (2014), no. 4, 1031-1040. https://doi.org/10.4134/BKMS.2014.51.4.1031
- C. Li, M. R. Lee, and S. Baek, Semi-cubically hyponormal weighted shifts with recursive type, Filomat 27 (2013), no. 6, 1043-1056. https://doi.org/10.2298/FIL1306043L
- Y. T. Poon and J. Yoon, Quadratically hyponormal recursively generated weighted shifts need not be positively quadratically hyponormal, Integral Equations Operator Theory 58 (2007), no. 4, 551-562. https://doi.org/10.1007/s00020-007-1505-1
- J. G. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367-379. https://doi.org/10.2140/pjm.1966.17.367
- Wolfram Research, Inc, Mathematica, Version 8.0, Wolfram Research Inc., Champaign, IL, 2010.