FIGURE 1. Graphs of g, h, k on the interval [-1, x1]
FIGURE 2. Graphs of g, h, k on the interval [x1, x2]
FIGURE 3. Graphs of g, h, k on the interval [x2, x3]
FIGURE 4. Graphs of g, h, k on the interval [x3, x4]
FIGURE 5. Graphs of g, h, k on the interval [x4, 0]
References
- J. H. Choi, Y. C. Kim, and T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc. Japan 59 (2007), no. 3, 707-727. https://doi.org/10.2969/jmsj/05930707
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- R. Kargar, A. Ebadian, and J. J. Sokol, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory 11 (2017), no. 7, 1639-1649. https://doi.org/10.1007/s11785-016-0584-x
- K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku. Kyoto Univ. 1772 (2011), 21-25.
- K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J. 1 (2012), no. 2, 127-131.
- O. S. Kwon, A. Lecko, and Y. J. Sim, On the fourth coeffcient of functions in the Caratheodory class, Comput. Methods Funct. Theory 18 (2018), no. 2, 307-314. https://doi.org/10.1007/s40315-017-0229-8
- M. Li and T. Sugawa, A note on successive coeffcients of convex functions, Comput. Methods Funct. Theory 17 (2017), no. 2, 179-193. https://doi.org/10.1007/s40315-016-0177-8
- R. J. Libera and E. J. Zlotkiewicz, Early coeffcients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
- R. J. Libera and E. J. Zlotkiewicz, Coeffcient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.1090/S0002-9939-1983-0681830-8
- R. Ohno and T. Sugawa, Coeffcient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math. 58 (2018), no. 2, 227-241. https://doi.org/10.1215/21562261-2017-0015