DOI QR코드

DOI QR Code

Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction

LT-WGS 반응을 위한 Cu/ZnO/MgO/Al2O3 촉매의 수분처리에 의한 촉매 특성 분석

  • PARK, JIHYE (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • BAEK, JEONG HUN (Korea Institute of Energy Research) ;
  • JO, GWANG HUI (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • RASHEED, HAROON UR (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • YI, KWANG BOK (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 에너지과학기술대학원) ;
  • 백정훈 (한국에너지기술연구원) ;
  • 조광희 (충남대학교 에너지과학기술대학원) ;
  • ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2019.01.31
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

In order to investigate the effect of water treatment on activity of WGS catalyst, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were synthesized by co-precipitation method. The prepared catalysts were water-treated at two different temperature (250, $350^{\circ}C$). Synthesized catalysts were characterized by using BET, SEM, $N_2O$ chemisorption, XRD, $H_2-TPR$ and XPS analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $180-320^{\circ}C$. The reduction temperature decreased with water treatment and CZMA_250 catalyst showed the lowest reduction temperature and retained a large amount of $Cu^+$. Water-treated catalysts showed increased reactivity compared to untreated catalyst and the CZMA_250 catalyst showed higher catalytic activity on WGS reaction.

Keywords

SSONB2_2019_v30n2_95_f0001.png 이미지

Fig. 1. SEM images of CZMA catalysts at (a, b) CZMA, (c, d) CZMA_250, (e, f) CZMA_350

SSONB2_2019_v30n2_95_f0002.png 이미지

Fig. 2. XRD pattern of the CZMA catalysts

SSONB2_2019_v30n2_95_f0003.png 이미지

Fig. 3. H2-TPR profiles of CZMA catalysts

SSONB2_2019_v30n2_95_f0004.png 이미지

Fig. 4. Cu 2p XPS spectra of CZMA catalysts

SSONB2_2019_v30n2_95_f0005.png 이미지

Fig. 5. Catalytic activities of CZMA catalysts

Table 1. BET analysis results of CZMA catalysts

SSONB2_2019_v30n2_95_t0001.png 이미지

Table 2. Characteristics of Cu particle in CZMA catalysts

SSONB2_2019_v30n2_95_t0002.png 이미지

References

  1. M. Mikkelsen, M. Jorgensen, and F. C. Krebs, "The teraton challenge. A review of fixation and transformation of carbon dioxide", Energy Environ. Sci., Vol. 3, No. 1, 2010, pp. 43-81, doi: https://doi.org/10.1039/B912904A.
  2. C. Rhodes, G. J. Hutchings, and A. M. Ward, "Water-gas Shift Reaction: Finding the Mechanistic Boundary", Catal. Today, Vol. 23, No. 1, 1995, pp. 43-58, doi: https://doi.org/10.1016/0920-5861(94)00135-O.
  3. C. K. Byun, H. B. Im, J. Park, J. Baek, J. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction", Clean Technol., Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.
  4. B. S. R J, M. Loganathan, and M. S. Shantha, "A Review of the Water Gas Shift Reaction Kinetics", Int. J. Chem. React. Eng., Vol. 8, No. 1, 2010, doi: https://doi.org/10.2202/1542-6580.2238.
  5. J. H. Baek, J. M. Jeong, J. H. Park, K. B. Yi, and Y. W. Rhee, "Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/$Al_2O_3$ Catalyst for Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, No. 5, 2015, pp. 423-430, doi: https://doi.org/10.7316/KHNES.2015.26.5.423.
  6. F. S. Stone and D. Waller, "Cu-ZnO and Cu-ZnO/$Al_2O_3$ Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts", Top. Catal., Vol. 22, No. 3-4, 2003, pp. 305-318, doi: https://doi.org/10.1023/A:1023592407825.
  7. P. Kowalik, M. Konkol, K. Antoniak, W. Prochniak, and P. Wiercioch, "The effect of the precursor ageing on properties of the Cu/ZnO/$Al_2O_3$ catalyst for low temperature water-gas shift (LT-WGS)", J. Mol. Catal. A: Chem., Vol. 392, 2014, pp. 127-133, doi: https://doi.org/10.1016/j.molcata.2014.05.003.
  8. R. T. Figueiredo, H. M. C. Andrade, and J. L. Fierro, "Influence of the preparation methods and redox properties of Cu/ZnO/$Al_2O_3$ catalysts for the water gas shift reaction", J. Mol. Catal. A: Chem., Vol. 318, No. 1-2, 2010, pp. 15-20, doi: https://doi.org/10.1016/j.molcata.2009.10.028.
  9. N. K. Park and T. J. Lee, "Control of surface area and activity with changing precipitation rate in preparation of Cu-Zn based catalysts for dimethyl ether direct synthesis", Korean J. Chem. Eng., Vol. 28, No. 10, 2011, pp. 2076-2080, doi: https://doi.org/10.1007/s11814-011-0061-1.
  10. X. Wang, R. J. Gorte, and J. Wagner, "Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction", J. Catal., Vol. 212, No. 2, 2002, pp. 225-230, doi: https://doi.org/10.1006/jcat.2002.3789.
  11. M. V. Twigg and M. S. Spencer, "Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions", Appl. Catal., A., Vol. 12, No. 1-2, 2001, pp. 161-174, doi: https://doi.org/10.1016/S0926-860X(00)00854-1.
  12. J. H. Park, J. H. Baek, R. H. Hwang, and K. B. Yi, "Enhanced Catalytic Activity of Cu/ZnO/$Al_2O_3$ Catalyst by Mg Addition for Water Gas Shift Reaction", Clean Technol., Vol. 23, No. 4, 2017, pp. 429-434, doi: https://doi.org/10.7464/ksct.2017.23.4.429.
  13. S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, "Cu-Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite - Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study", Chem. Eur. J., Vol. 20, No. 13, 2014, pp. 3782-3792, doi: https://doi.org/10.1002/chem.201302599.
  14. P. Kumar and R. Idem, "A Comparative Study of Copper-Promoted Water-Gas-Shift (WGS) Catalysts", Energy Fuels, Vol. 21, No. 2, 2007, pp. 522-529, doi: https://doi.org/10.1021/ef060389x.
  15. I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, and R. Schlogl, "Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/$Al_2O_3$ catalysts for methanol synthesis", Angew. Chem. Int. Edit., Vol. 46, No. 38, 2007, pp. 7324-7327, doi: https://doi.org/10.1002/anie.200702600.
  16. X. Lin, Y. Zhang, L. Yin, C. Chen, Y. Zhan, and D. Li, "Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite", Int. J. Hydrogen Energy, Vol. 39, No. 12, 2014, pp. 6424-6432, doi: https://doi.org/10.1016/j.ijhydene.2014.02.018.
  17. B. Lindstrom, L. J. Pettersson, and P. G. Menon, "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on ${\gamma}$-alumina for Methanol Reforming for Fuel Cell Vehicles", Appl. Catal., A., Vol. 234, No. 1-2, 2002, pp. 111-125, doi: https://doi.org/10.1016/S0926-860X(02)00202-8.
  18. T. L. Reitz, P. L. Lee, K. F. Czaplewski, J. C. Lang, K. E. Popp, and H. H. Kung, "Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction", J. Catal., Vol. 199, No. 2, 2001, pp. 193-201, doi: https://doi.org/10.1006/jcat.2000.3141.
  19. A. A. G. Lima, M. Nele, E. L. Moreno, and H. M. C. Andrade, "Composition Effects on the Activity of Cu-ZnO-$Al_2O_3$ Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach", Appl. Catal., A., Vol. 171, No. 1, 1998, pp. 31-43, doi: https://doi.org/10.1016/S0926-860X(98)00072-6.
  20. J. H. Park, H. B. Im, R. H. Hwang, J. H. Baek, K. Y. Koo, and K. B. Yi, "Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water", Trans. of the Korean Hydrogend and New Energy Society, Vol. 28, No. 1, 2017, pp. 1-8, doi: https://doi.org/10.7316/KHNES.2017.28.1.1.