Fig. 1. SEM images of CZMA catalysts at (a, b) CZMA, (c, d) CZMA_250, (e, f) CZMA_350
Fig. 2. XRD pattern of the CZMA catalysts
Fig. 3. H2-TPR profiles of CZMA catalysts
Fig. 4. Cu 2p XPS spectra of CZMA catalysts
Fig. 5. Catalytic activities of CZMA catalysts
Table 1. BET analysis results of CZMA catalysts
Table 2. Characteristics of Cu particle in CZMA catalysts
References
- M. Mikkelsen, M. Jorgensen, and F. C. Krebs, "The teraton challenge. A review of fixation and transformation of carbon dioxide", Energy Environ. Sci., Vol. 3, No. 1, 2010, pp. 43-81, doi: https://doi.org/10.1039/B912904A.
- C. Rhodes, G. J. Hutchings, and A. M. Ward, "Water-gas Shift Reaction: Finding the Mechanistic Boundary", Catal. Today, Vol. 23, No. 1, 1995, pp. 43-58, doi: https://doi.org/10.1016/0920-5861(94)00135-O.
- C. K. Byun, H. B. Im, J. Park, J. Baek, J. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction", Clean Technol., Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.
- B. S. R J, M. Loganathan, and M. S. Shantha, "A Review of the Water Gas Shift Reaction Kinetics", Int. J. Chem. React. Eng., Vol. 8, No. 1, 2010, doi: https://doi.org/10.2202/1542-6580.2238.
-
J. H. Baek, J. M. Jeong, J. H. Park, K. B. Yi, and Y. W. Rhee, "Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/
$Al_2O_3$ Catalyst for Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, No. 5, 2015, pp. 423-430, doi: https://doi.org/10.7316/KHNES.2015.26.5.423. -
F. S. Stone and D. Waller, "Cu-ZnO and Cu-ZnO/
$Al_2O_3$ Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts", Top. Catal., Vol. 22, No. 3-4, 2003, pp. 305-318, doi: https://doi.org/10.1023/A:1023592407825. -
P. Kowalik, M. Konkol, K. Antoniak, W. Prochniak, and P. Wiercioch, "The effect of the precursor ageing on properties of the Cu/ZnO/
$Al_2O_3$ catalyst for low temperature water-gas shift (LT-WGS)", J. Mol. Catal. A: Chem., Vol. 392, 2014, pp. 127-133, doi: https://doi.org/10.1016/j.molcata.2014.05.003. -
R. T. Figueiredo, H. M. C. Andrade, and J. L. Fierro, "Influence of the preparation methods and redox properties of Cu/ZnO/
$Al_2O_3$ catalysts for the water gas shift reaction", J. Mol. Catal. A: Chem., Vol. 318, No. 1-2, 2010, pp. 15-20, doi: https://doi.org/10.1016/j.molcata.2009.10.028. - N. K. Park and T. J. Lee, "Control of surface area and activity with changing precipitation rate in preparation of Cu-Zn based catalysts for dimethyl ether direct synthesis", Korean J. Chem. Eng., Vol. 28, No. 10, 2011, pp. 2076-2080, doi: https://doi.org/10.1007/s11814-011-0061-1.
- X. Wang, R. J. Gorte, and J. Wagner, "Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction", J. Catal., Vol. 212, No. 2, 2002, pp. 225-230, doi: https://doi.org/10.1006/jcat.2002.3789.
- M. V. Twigg and M. S. Spencer, "Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions", Appl. Catal., A., Vol. 12, No. 1-2, 2001, pp. 161-174, doi: https://doi.org/10.1016/S0926-860X(00)00854-1.
-
J. H. Park, J. H. Baek, R. H. Hwang, and K. B. Yi, "Enhanced Catalytic Activity of Cu/ZnO/
$Al_2O_3$ Catalyst by Mg Addition for Water Gas Shift Reaction", Clean Technol., Vol. 23, No. 4, 2017, pp. 429-434, doi: https://doi.org/10.7464/ksct.2017.23.4.429. - S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, "Cu-Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite - Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study", Chem. Eur. J., Vol. 20, No. 13, 2014, pp. 3782-3792, doi: https://doi.org/10.1002/chem.201302599.
- P. Kumar and R. Idem, "A Comparative Study of Copper-Promoted Water-Gas-Shift (WGS) Catalysts", Energy Fuels, Vol. 21, No. 2, 2007, pp. 522-529, doi: https://doi.org/10.1021/ef060389x.
-
I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, and R. Schlogl, "Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/
$Al_2O_3$ catalysts for methanol synthesis", Angew. Chem. Int. Edit., Vol. 46, No. 38, 2007, pp. 7324-7327, doi: https://doi.org/10.1002/anie.200702600. - X. Lin, Y. Zhang, L. Yin, C. Chen, Y. Zhan, and D. Li, "Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite", Int. J. Hydrogen Energy, Vol. 39, No. 12, 2014, pp. 6424-6432, doi: https://doi.org/10.1016/j.ijhydene.2014.02.018.
-
B. Lindstrom, L. J. Pettersson, and P. G. Menon, "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on
${\gamma}$ -alumina for Methanol Reforming for Fuel Cell Vehicles", Appl. Catal., A., Vol. 234, No. 1-2, 2002, pp. 111-125, doi: https://doi.org/10.1016/S0926-860X(02)00202-8. - T. L. Reitz, P. L. Lee, K. F. Czaplewski, J. C. Lang, K. E. Popp, and H. H. Kung, "Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction", J. Catal., Vol. 199, No. 2, 2001, pp. 193-201, doi: https://doi.org/10.1006/jcat.2000.3141.
-
A. A. G. Lima, M. Nele, E. L. Moreno, and H. M. C. Andrade, "Composition Effects on the Activity of Cu-ZnO-
$Al_2O_3$ Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach", Appl. Catal., A., Vol. 171, No. 1, 1998, pp. 31-43, doi: https://doi.org/10.1016/S0926-860X(98)00072-6. - J. H. Park, H. B. Im, R. H. Hwang, J. H. Baek, K. Y. Koo, and K. B. Yi, "Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water", Trans. of the Korean Hydrogend and New Energy Society, Vol. 28, No. 1, 2017, pp. 1-8, doi: https://doi.org/10.7316/KHNES.2017.28.1.1.