DOI QR코드

DOI QR Code

X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction

  • 최진삼 (울산대학교 첨단소재공학부) ;
  • 박규열 (울산대학교 기계공학부) ;
  • 공영민 (울산대학교 첨단소재공학부)
  • Choi, Jinsam (School of Materials Science & Engineering, University of Ulsan) ;
  • Park, Kyu Yeol (School of Mechanical Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science & Engineering, University of Ulsan)
  • 투고 : 2018.11.16
  • 심사 : 2019.04.09
  • 발행 : 2019.04.27

초록

As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

키워드

참고문헌

  1. R. J. H. Hannink, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 462 (2000).
  2. R. J. H. Hannink, P. M. Kelly, K. A. Johnson, R. T. Pascoe and R. C. Gravie, Microstructural Changes during Isothermal Ageing of a Calcia Partially Stabilized Zirconia, p.116, American Ceramic Society, Ohio, USA (1981).
  3. A. H. Heuer, V. Lanteri, A.C. Farmer, R. Chaim, R. R. Lee, B. W. Kibbel and R. M. Dickerson, J. Mater. Sci., 24, 124132 (1989).
  4. T. B. Bayanova, Petrology, 14, 187 (2006). https://doi.org/10.1134/S0869591106020032
  5. P. Duwez, F. Odell and F. H. Brown, J. Am. Ceram. Soc., 35, 107 (1952). https://doi.org/10.1111/j.1151-2916.1952.tb13081.x
  6. B. Arndt, H. Noei, T. F. Keller, P. Muller, V. Vonk, A. Nenning, A. K.Opitz, J. Fleig, U. Rutt and A. Stierle, Thin Solid Films, 603, 56 (2016). https://doi.org/10.1016/j.tsf.2016.01.043
  7. T. K. Gupta, F. F. Lange and J. Bechtold, J. Mater. Sci., 13, 1464 (1978). https://doi.org/10.1007/BF00553200
  8. K. Kobayasi, H. Kuwajima and T. Misaki, Solid. State Ionics, 3/4, 489 (1981). https://doi.org/10.1016/0167-2738(81)90138-7
  9. T. Sato and M. Shimada, J. Am. Ceram. Soc., 22, 2277 (1987).
  10. K. Tsukuma and M. Shimada, J. Mater. Sci., 20, 1178 (1985). https://doi.org/10.1007/BF01026311
  11. C. E. Kril and R. Birringer, Philos. Mag. A, 77, 16211 (1998).
  12. ASTM E165/E165M-12, ASTM International, 03.03, Weast Conshohocken, Pennsylvania, USA (2012).
  13. A. G. Evans, J. Am. Ceram. Soc., 73, 187 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06493.x
  14. S. Meenaloshini, Y. W. Sing, G. Mohsen and R. Dinesh, Int. J. Nanoelect. & Mat., 8, 61 (2015).
  15. H. G. Scott, J. Mater. Sci., 10, 1527 (1975). https://doi.org/10.1007/BF01031853
  16. E. Purushotham, J. Eng. Sci. and Tech. Rev., 6, 83 (2013). https://doi.org/10.25103/jestr.061.16
  17. B. D. Cullity, Elements of X-ray Diffraction, p.284, Addison-Wesley, Massachusetts USA (1978).
  18. J. Nakamura, M. Amaya, F. Nagase and T. Fuketa, J. Nucl. Sci. Technol., 46, 944 (2008). https://doi.org/10.3327/jnst.46.944
  19. H. Suzuki, K. Akita and H. Misawa, Jpn. J. Appl. Phys., 42, 2876 (2003). https://doi.org/10.1143/JJAP.42.2876
  20. H. G. Scott, J. Mater. Sci., 10, 1527 (1975). https://doi.org/10.1007/BF01031853
  21. R. J. H. Hannink and V. S. Stubicon, J. Am. Ceram. Soc., 66, 260 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb15710.x
  22. K. Kobayashi, H. Kuwajima and T. Misaki, Solid State Ionics, 3/4, 489 (1981). https://doi.org/10.1016/0167-2738(81)90138-7