DOI QR코드

DOI QR Code

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal

삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성

  • Park, Sung-Hyun (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Kim, Ki-Young (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Park, Jong-Moon (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Choi, In-Chul (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Ito, Kazuhiro (Joining and Welding Research Institute, Osaka University) ;
  • Oh, Myung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT))
  • 박성현 (금오공과대학교 신소재공학부) ;
  • 김기영 (금오공과대학교 신소재공학부) ;
  • 박종문 (금오공과대학교 신소재공학부) ;
  • 최인철 (금오공과대학교 신소재공학부) ;
  • ;
  • 오명훈 (금오공과대학교 신소재공학부)
  • Received : 2019.03.19
  • Accepted : 2019.04.04
  • Published : 2019.04.27

Abstract

Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

Keywords

References

  1. Y.-W. Kim, JOM, 41, 24 (1989). https://doi.org/10.1007/BF03220267
  2. M. Yamaguchi and Y. Umakoshi, Prog. Maer. Sci., 34, 1, (1990). https://doi.org/10.1016/0079-6425(90)90002-Q
  3. X. Wu, Intermetallics, 14, 1114 (2006). https://doi.org/10.1016/j.intermet.2005.10.019
  4. Y.-W. Kim and S. L. Kim, Intermetallics, 53, 92 (2014). https://doi.org/10.1016/j.intermet.2014.04.006
  5. V. Guther, M. Allen, J. Klose and H. Clemens, Intermetallics, 103, 12 (2018). https://doi.org/10.1016/j.intermet.2018.09.006
  6. Y.-W. Kim and S. L. Kim, JOM, 70, 553 (2018). https://doi.org/10.1007/s11837-018-2747-x
  7. M. H. Oh, S. H. Hwang, S. N. Choi, I. S. Kim and S. J. Kim, J. Adv. Mater. KNUT, 2, 7 (1995).
  8. T. Noda, Intermetallics, 6, 709 (1998). https://doi.org/10.1016/S0966-9795(98)00060-0
  9. T. Tetsui, Adv. Eng. Mater., 3, 307 (2001). https://doi.org/10.1002/1527-2648(200105)3:5<307::AID-ADEM307>3.0.CO;2-3
  10. P. He, J. C. Feng, B. G. Zhang and Y. Y. Qian, Mater. Charact., 48, 401 (2002). https://doi.org/10.1016/S1044-5803(02)00319-4
  11. G. X. Luo, G. Q. Wu, Z. Huang and Z. J. Ruan, Scr. Mater., 57, 521 (2007). https://doi.org/10.1016/j.scriptamat.2007.05.020
  12. T. Noda, T. Shimizu, M. Okabe and T. Mikubo, Mater. Sci. Eng., A239-240, 613 (1997).
  13. H. Li, H. Wei, P. He, T. Lin, J. Feng and Y. Huang, Intermetallics, 34, 69 (2013). https://doi.org/10.1016/j.intermet.2012.11.008
  14. W. B. Lee, Y. J. Kim and S. B. Jung, Intermetallics, 12, 671 (2004). https://doi.org/10.1016/j.intermet.2004.02.004
  15. H. Dong, L. Yu, H, Gao, D. Deng, W. Zhou and C. Dong, Trans. Nonferrous Met. Soc. China, 24, 3126 (2014). https://doi.org/10.1016/S1003-6326(14)63451-8
  16. R. Kumar and M. Balasubramanian, Def. Technol., 11, 65 (2015). https://doi.org/10.1016/j.dt.2014.10.001
  17. S. G. Lee, B. H. Min, S. H. Choi, D. K. Shim and T. K. Min, J. Korean Weld. Joi. Soc., 25, 53 (2007).
  18. C. Muralimohan, V. Muthupandi and K. Sivaprasad, Proc. Mater. Sci., 5, 1120 (2014). https://doi.org/10.1016/j.mspro.2014.07.406
  19. N. Yamamoto, M. Takahashi, M. Aritoshi and K. Ikeuchi, Mater. Sci. Forum, 539-543, 3865 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.3865
  20. P. Li, J. Li, M. Salman, L. Liang, J. Xiong and F. Zhang, Mater. Design, 56, 649 (2014). https://doi.org/10.1016/j.matdes.2013.11.065
  21. Y. L. Song, Y. H. Liu, X. Y. Zhu, S. R. Yu and Y. B. Zhang, Trans. Nonferrous Met. Soc. China, 18, 14 (2008). https://doi.org/10.1016/S1003-6326(08)60003-5