DOI QR코드

DOI QR Code

Detection and Identification of CMG Faults based on the Gyro Sensor Data

자이로 센서 정보 기반 CMG 고장 진단 및 식별

  • Lee, Jung-Hyung (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Hun-Jo (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Jun-Yong (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Oh, Hwa-Suk (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Song, Tae-Seong (LIGNEX1 Co. Ltd) ;
  • Kang, Jeong-min (LIGNEX1 Co. Ltd) ;
  • Song, Deok-ki (LIGNEX1 Co. Ltd) ;
  • Seo, Joong-bo (Defense Industry Technology Center, Agency for Defense Development)
  • 이정형 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이헌조 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이준용 (한국항공대학교 항공우주 및 기계공학과) ;
  • 오화석 (한국항공대학교 항공우주 및 기계공학과) ;
  • 송태성 (LIG넥스원(주)) ;
  • 강정민 (LIG넥스원(주)) ;
  • 송덕기 (LIG넥스원(주)) ;
  • 서중보 (국방과학연구소)
  • Received : 2018.10.11
  • Accepted : 2019.04.06
  • Published : 2019.04.30

Abstract

Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

인공위성 구동기로 사용되는 제어 모멘트 자이로(CMG)는 자신의 김블을 조종하여 큰 토크를 생성한다. 각각의 김블은 고속으로 회전하는 휠을 받치고 있기 때문에 휠의 질량 불균형은 외란을 발생시키게 되고 위성의 자세제어 성능을 저하시킨다. 따라서 구동기 고장을 대비하기 위해 외란을 진단하고 식별할 필요가 있다. 외란을 진단하기 위해 상태 관측기를 이용한 방법을 적용하였다. 본 논문에서는 2차 슬라이딩 모드 관측기를 이용하여 CMG의 단일 외란/고장을 탐지하였다. 또한 4개의 CMG가 설치되어 있는 위성 시뮬레이터를 이용하여 이 알고리즘을 검증하였다.

Keywords

OJSSBW_2019_v13n2_26_f0001.png 이미지

Fig. 1 CMGs installed in a pyramid configuration

OJSSBW_2019_v13n2_26_f0004.png 이미지

Fig. 4 Responses on oscillating disturbance

OJSSBW_2019_v13n2_26_f0006.png 이미지

Fig. 6 Hardware Simulator & SCL/KAU CMG

OJSSBW_2019_v13n2_26_f0007.png 이미지

Fig. 7 Design & manufactured Imbalance Generator

OJSSBW_2019_v13n2_26_f0009.png 이미지

Fig. 9 Spacecraft Angular Velocity

OJSSBW_2019_v13n2_26_f0010.png 이미지

Fig. 10 Estimated Disturbance

OJSSBW_2019_v13n2_26_f0012.png 이미지

Fig. 2 Sliding Observer for disturbance detection

OJSSBW_2019_v13n2_26_f0013.png 이미지

Fig. 3 Responses on a secular disturbance

OJSSBW_2019_v13n2_26_f0014.png 이미지

Fig. 5 Identification of Imbalance Fault Wheel

OJSSBW_2019_v13n2_26_f0015.png 이미지

Fig. 8 Imbalance Generator Installed on the CMG1

OJSSBW_2019_v13n2_26_f0016.png 이미지

Fig. 11 Fault Wheel Identification

References

  1. M. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
  2. R. Masterson et al, "Development and validation of reaction wheel disturbance models: empirical model," Journal of Sound and Vibration, Vol. 249, No. 3, pp. 575-598, 2002. https://doi.org/10.1006/jsvi.2001.3868
  3. S. Taniwaki and Y. Ohkami, "Experimental and Numerical Analysis of Reaction Wheel Disturbance," JSME International Journal, Vol. 46, No.2, 2003.
  4. H. Oh et al, "Torque and force measurement of a prototype KAU reaction wheel and the effect of disturbance on the attitude stability of spacecraft," Journal of Mechanical Science and technology, Vol. 15, No. 6, pp. 743-751, 2001.
  5. V. Venkatasubramanian et al, "A review of process fault detection and diagnosis Part I; Quantitative model based methods," Computers and Chemical Engineering, Vol. 27, pp. 293-311, 2003. https://doi.org/10.1016/S0098-1354(02)00160-6
  6. W. Chen and M. Saif, "Robust fault detection in uncertain nonlinear systems via a second order slding mode observer," Proceedings of the 40th IEEE Conference on decision and control, Orlando, Fl., U.S.A., 2001.
  7. T. Jiang and K. Khorasani, "Fault detection, isolation, and reconstruction strategy for a satellite's attitude control subsystem with redundant wheels," IEEE, 2007.
  8. J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
  9. H. Oh and J. Kim,"The Detection and Identification of Control Moment Gyro Faults," IAA-AAS-DyCoSS2-14-13-05, Rome, Mar., 2014
  10. H. Oh and D. Cheon, "Precision measurements of reaction wheel disturbances with frequency compensation process," Journal of Mechanical Science and Technology, Vol. 19, No. 1, pp. 136-143, 2005. https://doi.org/10.1007/BF02916112
  11. B. Wie, H. Weiss, A. Arapostathis, "Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations," : Journal of Guidance, Control and Dynamics, Vol. 12, No. 3, pp. 375-380, 1989 https://doi.org/10.2514/3.20418
  12. H.S. Oh, S. Vadali, "Feedback Control and Steering Laws for Spacecraft using Single Gimbal Control Moment Gyros," Journal of Astronautical Science. Vol.39, pp.183-203, 1991.
  13. H.S. Oh, J.H. Lee, H.J. Lee, "Mass properties estimation of a satellite simulator based on the integration method,' The 10th International Conference for Mechanical and Electrical Technology, Vancouver, 2018
  14. Jichul Kim, Jinhyuk Yoon, Junyoung Lee and Hwasuk Oh, "Performance Analysis of Reaction Wheel according to Bearing Preload and Oil Quantity", Journal of The Society for Aerospace System Engineering, Vol.10, No.1, pp.35-42, 2016