References
- Guptill L, Slater L, Wu CC et al (1999) Immune response of neonatal specific pathogen-free cats to experimental infection with Bartonella henselae. Vet Immunol Immunopathol 71, 233-243 https://doi.org/10.1016/S0165-2427(99)00104-X
- Kabeya H, Sase M, Yamashita M and Maruyama S (2006) Predominant T helper 2 immune responses against Bartonella henselae in naturally infected cats. Microbiol Immunol 50, 171-178 https://doi.org/10.1111/j.1348-0421.2006.tb03783.x
- Kabeya H, Yamasaki A, Ikariya M, Negishi R, Chomel BB and Maruyama S (2007) Characterization of Th1 activation by Bartonella henselae stimulation in BALB/c mice: Inhibitory activities of interleukin-10 for the production of interferon-gamma in spleen cells. Vet Microbiol 119, 290-296 https://doi.org/10.1016/j.vetmic.2006.08.010
- Regnath T, Mielke ME, Arvand M and Hahn H (1998) Murine Model of Bartonella henselae Infection in the Immunocompetent Host. Infect Immun 66, 5534-5536 https://doi.org/10.1128/IAI.66.11.5534-5536.1998
- McGuirk P and Mills KH (2002) Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol 23, 450-455 https://doi.org/10.1016/S1471-4906(02)02288-3
- Musso T, Badolato R, Ravarino D et al (2001) Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response. Infect Immun 69, 5974-5980 https://doi.org/10.1128/IAI.69.10.5974-5980.2001
- Chomel BB, Abbott RC, Kasten RW et al (1995) Bartonella henselae prevalence in domestic cats in Califoria: risk factors and association between bacteremia and antibody titers. J Clin Microbiol 33, 2445-2450 https://doi.org/10.1128/JCM.33.9.2445-2450.1995
- Kabeya H, Umehara T, Okanishi H et al (2009) Experimental infection of cats with Bartonella henselae resulted in rapid clearance associated with T helper 1 immune responses. Microbes Infect 11, 716-720 https://doi.org/10.1016/j.micinf.2009.03.008
- Gentil BJ, Delphin C, Mbele GO et al (2001) The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein: potential implications for Ca2+ homeostasis regulation by S100B. J Biol Chem 276, 23253-23261 https://doi.org/10.1074/jbc.M010655200
- Shin JH, Kim IY, Kim YN et al (2015) Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure. PLoS One 10, e0139720 https://doi.org/10.1371/journal.pone.0139720
- Shin JH, Lee SH, Kim YN et al (2016) AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to beta-adrenergic signalling. Sci Rep 6, 23426 https://doi.org/10.1038/srep23426
-
Woo JK, Shin JH, Lee SH et al (2018) Essential role of Ahnak in adipocyte differentiation leading to the transcriptional regulation of
$Bmpr1{\alpha}$ expression. Cell Death Dis 9, 864 https://doi.org/10.1038/s41419-018-0873-6 - Lee IH, Sohn M, Lim HJ et al (2014) Ahnak functions as a tumor suppressor via modulation of TGFbeta/Smad signaling pathway. Oncogene 33, 4675-4684 https://doi.org/10.1038/onc.2014.69
- Park JW, Kim IY, Choi JW et al (2018) AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res 16, 1287-1298 https://doi.org/10.1158/1541-7786.MCR-17-0726
- Matza D, Badou A, Kobayashi KS et al (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28, 64-74 https://doi.org/10.1016/j.immuni.2007.11.020
- Szczesny P, Linke D, Ursinus A et al (2008) Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 4, e1000119 https://doi.org/10.1371/journal.ppat.1000119
- Arvand M, Ignatius R, Regnath T, Hahn H and Mielke ME (2001) Bartonella henselae-specific cell-mediated immune responses display a predominantly Th1 phenotype in experimentally infected C57BL/6 mice. Infect Immun 69, 6427-6433 https://doi.org/10.1128/IAI.69.10.6427-6433.2001
- Biedermann T, Rocken M and Carballido JM (2004) TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc 9, 5-14 https://doi.org/10.1111/j.1087-0024.2004.00829.x
- Cantrell D (1996) T cell antigen receptor signal transduction pathways. Annu Rev Immunol 14, 259-274 https://doi.org/10.1146/annurev.immunol.14.1.259
- Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19, 497-521 https://doi.org/10.1146/annurev.immunol.19.1.497
- Lee IH, Lim HJ, Yoon S et al (2008) Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex. J Biol Chem 283, 6312-6320 https://doi.org/10.1074/jbc.M706878200
- Kim IY, Jung J, Jang M et al (2010) 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun 403, 428-434 https://doi.org/10.1016/j.bbrc.2010.11.048