DOI QR코드

DOI QR Code

Evaluation of reliability of zirconia materials to be used in implant-retained restoration on the atrophic bone of the posterior maxilla: A finite element study

  • Degirmenci, Kubra (Department of Prosthodontics, Faculty of Dentistry, Bolu Abant Izzet Baysal University) ;
  • Kocak-Buyukdere, Ayse (Department of Prosthodontics, Faculty of Dentistry, Kocaeli University) ;
  • Ekici, Bulent (Department of Mechanical Engineering, Faculty of Engineering, Marmara University)
  • 투고 : 2018.11.28
  • 심사 : 2019.03.12
  • 발행 : 2019.04.30

초록

PURPOSE. Zirconia materials have been used for implant-retained restorations, but the stress distribution of zirconia is not entirely clear. The aim of this study is to evaluate the stress distribution and risky areas caused by the different design of zirconia restorations on the atrophic bone of the posterior maxilla. MATERIALS AND METHODS. An edentulous D4-type bone model was prepared from radiography of an atrophic posterior maxilla. Monolithic zirconia and zirconia-fused porcelain implant-retained restorations were designed as splinted or non-splinted. 300-N occlusal forces were applied obliquely. Stress analyses were performed using a 3D FEA program. RESULTS. According to stress analysis, the bone between the 1) molar implant and the 2) premolar in the non-splinted monolithic zirconia restoration model was stated as the riskiest area. Similarly, the maximum von Mises stress value was detected on the bone of the non-splinted monolithic zirconia models. CONCLUSION. Splinting of implant-retained restorations can be more critical for monolithic zirconia than zirconia fused to porcelain for the longevity of the bone.

키워드

참고문헌

  1. Eazhil R, Swaminathan SV, Gunaseelan M, Kannan GV, Alagesan C. Impact of implant diameter and length on stress distribution in osseointegrated implants: A 3D FEA study. J Int Soc Prev Community Dent 2016;6:590-6. https://doi.org/10.4103/2231-0762.195518
  2. Seker E, Ulusoy M, Ozan O, Dogan D, Kusakci seker B. Biomechanical effects of different fixed partial denture designs planned on bicortically anchored short, graft-supported long, or 45-degree-inclined long implants in the posterior maxilla: A three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2014;29:e1-9. https://doi.org/10.11607/jomi.3264
  3. Testori T, Del Fabbro M, Capelli M, Zuffetti F, Francetti L, Weinstein RL. Immediate occlusal loading and tilted implants for the rehabilitation of the atrophic edentulous maxilla: 1-year interim results of a multicenter prospective study. Clin Oral Implants Res 2008;19:227-32. https://doi.org/10.1111/j.1600-0501.2007.01472.x
  4. Almeida EO, Rocha EP, Freitas Junior AC, Anchieta RB, Poveda R, Gupta N, Coelho PG. Tilted and short implants supporting fixed prosthesis in an atrophic maxilla: a 3D-FEA biomechanical evaluation. Clin Implant Dent Relat Res 2015;17:e332-42. https://doi.org/10.1111/cid.12129
  5. Fortin Y, Sullivan RM, Rangert BR. The Marius implant bridge: surgical and prosthetic rehabilitation for the completely edentulous upper jaw with moderate to severe resorption: a 5-year retrospective clinical study. Clin Implant Dent Relat Res 2002;4:69-77. https://doi.org/10.1111/j.1708-8208.2002.tb00155.x
  6. Zhang G, Yuan H, Chen X, Wang W, Chen J, Liang J, Zhang P. A three-dimensional finite element study on the biomechanical simulation of various structured dental implants and their surrounding bone tissues. Int J Dent 2016;2016:4867402.
  7. Lan TH, Liu PH, Chou MM, Lee HE. Fracture resistance of monolithic zirconia crowns with different occlusal thicknesses in implant prostheses. J Prosthet Dent 2016;115:76-83. https://doi.org/10.1016/j.prosdent.2015.06.021
  8. Pozzi A, Holst S, Fabbri G, Tallarico M. Clinical reliability of CAD/CAM cross-arch zirconia bridges on immediately loaded implants placed with computer-assisted/template-guided surgery: a retrospective study with a follow-up between 3 and 5 years. Clin Implant Dent Relat Res 2015;17:e86-96. https://doi.org/10.1111/cid.12132
  9. Cheng CW, Chien CH, Chen CJ, Papaspyridakos P. Clinical results and technical complications of posterior implant-supported modified monolithic zirconia single crowns and shortspan fixed dental prostheses: A 2-year pilot study. J Prosthodont 2018;27:108-14. https://doi.org/10.1111/jopr.12682
  10. Abdulmajeed AA, Lim KG, Narhi TO, Cooper LF. Completearch implant-supported monolithic zirconia fixed dental prostheses: A systematic review. J Prosthet Dent 2016;115:672-7. https://doi.org/10.1016/j.prosdent.2015.08.025
  11. de Souza Batista VE, Verri FR, Lemos CAA, Cruz RS, Oliveira HFF, Gomes JML, Pellizzer EP. Should the restoration of adjacent implants be splinted or nonsplinted? A systematic review and meta-analysis. J Prosthet Dent 2019;121:41-51. https://doi.org/10.1016/j.prosdent.2018.03.004
  12. Toniollo MB, Macedo AP, Pupim D, Zaparolli D, da Gloria Chiarello de Mattos M. Finite element analysis of bone stress in the posterior mandible using regular and short implants, in the same context, with splinted and nonsplinted prostheses. Int J Oral Maxillofac Implants 2017;32:e199-e206. https://doi.org/10.11607/jomi.5611
  13. Yan X, Zhang X, Chi W, Ai H, Wu L. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis. Acta Odontol Scand 2015;73:312-20. https://doi.org/10.3109/00016357.2014.967718
  14. El-Anwar MI, Yousief SA, Soliman TA, Saleh MM, Omar WS. A finite element study on stress distribution of two different attachment designs under implant supported overdenture. Saudi Dent J 2015;27:201-7. https://doi.org/10.1016/j.sdentj.2015.03.001
  15. Li T, Yang X, Zhang D, Zhou H, Shao J, Ding Y, Kong L. Analysis of the biomechanical feasibility of a wide implant in moderately atrophic maxillary sinus region with finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:e1-8. https://doi.org/10.1016/S2212-4403(12)00412-9
  16. Archangelo CM, Rocha EP, Pereira JA, Martin Junior M, Anchieta RB, Freitas Junior AC. Periodontal ligament influence on the stress distribution in a removable partial denture supported by implant: a finite element analysis. J Appl Oral Sci 2012;20:362-8. https://doi.org/10.1590/S1678-77572012000300012
  17. Tsouknidas A, Giannopoulos D, Savvakis S, Michailidis N, Lympoudi E, Fytanidis D, Pissiotis A, Michalakis K. The influence of bone quality on the biomechanical behavior of a tooth-implant fixed partial denture: A three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2016;31:e143-54. https://doi.org/10.11607/jomi.5254
  18. Wheleer MA. Dental anatomy, phisology and occlusion. 8th ed. St. Louis: Elsevier; 2010. p. 216, 230, 264, 280.
  19. Massoumi F, Taheri M, Mohammadi A, Amelirad O. Evaluation of the effect of buccolingual and apicocoronal positions of dental implants on stress and strain in alveolar bone by finite element analysis. J Dent (Tehran) 2018;15:10-9.
  20. Gomes de Oliveira S, Seraidarian PI, Landre J Jr, Oliveira DD, Cavalcanti BN. Tooth displacement due to occlusal contacts: a three-dimensional finite element study. J Oral Rehabil 2006;33:874-80. https://doi.org/10.1111/j.1365-2842.2006.01670.x
  21. Michailidis N, Karabinas G, Tsouknidas A, Maliaris G, Tsipas D, Koidis P. A FEM based endosteal implant simulation to determine the effect of peri-implant bone resorption on stress induced implant failure. Biomed Mater Eng 2013; 23:317-27.
  22. Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17:8-18. https://doi.org/10.1111/j.1600-0501.2006.01360.x
  23. Rubo JH, Capello Souza EA. Finite-element analysis of stress on dental implant prosthesis. Clin Implant Dent Relat Res 2010;12:105-13. https://doi.org/10.1111/j.1708-8208.2008.00142.x
  24. Merli M, Bianchini E, Mariotti G, Moscatelli M, Piemontese M, Rappelli G, Nieri M. Ceramic vs composite veneering of full arch implant-supported zirconium frameworks: assessing patient preference and satisfaction. A crossover double-blind randomised controlled trial. Eur J Oral Implantol 2017;10:311-22. https://doi.org/10.11138/orl/2017.10.3.311
  25. Salihoglu U, Boynuegri D, Engin D, Duman AN, Gokalp P, Balos K. Bacterial adhesion and colonization differences between zirconium oxide and titanium alloys: an in vivo human study. Int J Oral Maxillofac Implants 2011;26:101-7.
  26. Guven S, Beydemir K, Dundar S, Eratilla V. Evaluation of stress distributions in peri-implant and periodontal bone tissues in 3- and 5-unit tooth and implant-supported fixed zirconia restorations by finite elements analysis. Eur J Dent 2015;9:329-39. https://doi.org/10.4103/1305-7456.163223
  27. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia allceramic crown systems. Dent Mater 2009;25:1122-7. https://doi.org/10.1016/j.dental.2009.03.009
  28. Ferreira MB, Barao VA, Faverani LP, Hipolito AC, Assuncao WG. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA. Mater Sci Eng C Mater Biol Appl 2014;35:92-9. https://doi.org/10.1016/j.msec.2013.10.022
  29. Weigl P, Sander A, Wu Y, Felber R, Lauer HC, Rosentritt M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont 2018;10:79-84. https://doi.org/10.4047/jap.2018.10.2.79
  30. Naert I, Koutsikakis G, Duyck J, Quirynen M, Jacobs R, van Steenberghe D. Biologic outcome of implant-supported restorations in the treatment of partial edentulism. part I: a longitudinal clinical evaluation. Clin Oral Implants Res 2002;13:381-9. https://doi.org/10.1034/j.1600-0501.2002.130406.x
  31. Naert I, Koutsikakis G, Quirynen M, Duyck J, van Steenberghe D, Jacobs R. Biologic outcome of implant-supported restorations in the treatment of partial edentulism. Part 2: a longitudinal radiographic study. Clin Oral Implants Res 2002;13:390-5. https://doi.org/10.1034/j.1600-0501.2002.130407.x
  32. Behnaz E, Ramin M, Abbasi S, Pouya MA, Mahmood F. The effect of implant angulation and splinting on stress distribution in implant body and supporting bone: A finite element analysis. Eur J Dent 2015;9:311-8. https://doi.org/10.4103/1305-7456.163235
  33. Guichet DL, Yoshinobu D, Caputo AA. Effect of splinting and interproximal contact tightness on load transfer by implant restorations. J Prosthet Dent 2002;87:528-35. https://doi.org/10.1067/mpr.2002.124589
  34. Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a threedimensional finite element analysis. J Prosthodont Res 2010;54:133-42. https://doi.org/10.1016/j.jpor.2009.12.004
  35. Goiato MC, dos Santos DM, Santiago JF Jr, Moreno A, Pellizzer EP. Longevity of dental implants in type IV bone: a systematic review. Int J Oral Maxillofac Surg 2014;43:1108-16. https://doi.org/10.1016/j.ijom.2014.02.016
  36. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015;48:1-7. https://doi.org/10.1016/j.jbiomech.2014.11.017
  37. Amornvit P, Rokaya D, Keawcharoen K, Thongpulsawasdi N. Stress distribution in implant retained finger prosthesis: a finite element study. J Clin Diagn Res 2013;7:2851-4.
  38. Geramy A, Rokn A, Keshtkar A, Monzavi A, Hashemi HM, Bitaraf T. Comparison of short and standard implants in the posterior mandible: A 3D analysis using finite element method. J Dent (Tehran) 2018;15:130-6.