DOI QR코드

DOI QR Code

이산화염소가스를 이용한 식품산업용 소독장에서의 살균효과

Effect of Gaseous Chlorine Dioxide on Sterilization in Industrial Food-holding Cabinets

  • Kim, Hyeon Jeong (Department of Food Science and Technology, Graduate School Pukyong National University) ;
  • Shin, Jiyoung (Department of Food Science and Technology, Graduate School Pukyong National University) ;
  • Kim, Ji-eun (Department of Food Science and Technology, Graduate School Pukyong National University) ;
  • Yang, Ji-young (Department of Food Science and Technology, Graduate School Pukyong National University)
  • 투고 : 2019.02.07
  • 심사 : 2019.02.26
  • 발행 : 2019.04.30

초록

본 연구는 이산화염소 가스를 생성하는 앰플을 이용하여 6.5 L 용기에서 살균효과와 소취효과를 확인하였고, 소독장에서 이산화염소 가스 농도의 변화 및 S. aureus KCTC 1916와 E. coli KCTC 1682에 대한 살균 효과를 확인하였고, 소독장안에서 작업화 내부의 살균 효과 또한 확인하였다. 앰플은 6.5 L 용기에서 S. aureus KCTC 1916와 E. coli KCTC 1682에 대해 살균 효과가 있었다. 또한 포름알데히드에 대해서는 소취효과가 없었지만 암모니아와 페놀에는 효과가 있었다. 이산화염소 가스의 최대 농도는 앰플의 수가 많아 질수록 높아지는 것을 확인할 수 있었다. 앰플 4개는 최대 2.8 ppm, 6개일 때는 최대 4.6 ppm이었으며, 앰플 12개를 이용하였을 때는 이산화염소 가스 농도를 측정할 수 없었지만 앰플 수와 농도가 비례적으로 상승하는 것을 고려하여 최대 8.5~9.0 ppm 으로 추정할 수 있었다. 또한 순환팬을 가동하게 되면 5배 이상의 농도 감소가 발생하였다. S. aureus KCTC 1916는 24시간 처리하였을 때 앰플 4개는 0.49 log CFU/plate, 6개는 1.2 log CFU/plate 그리고 12개는 2.98 log CFU/plate 감소되었다. E. coli KCTC 1682는 24시간을 처리하였을 때 4개, 6개, 12개 순서로 0.16 log CFU/plate, 2.68 log CFU/plate, 6.06 log CFU/plate 감소하였다. 작업화 내부에 대해 24시간 동안 처리하였을 때 앰플 6개를 사용한 경우 S. aureus KCTC 1916와 E. coli KCTC 1682 는 각각 1.22 log CFU/plate, 2.10 log CFU/plate 감소하였고 12개로 처리한 것은 2.69 log CFU/plate, 4.41 log CFU/plate 감소하였다.

The aim of this study was to investigate the effect of different concentrations of chlorine dioxide ($ClO_2$) on sterilization and deodorization of food-holding cabinets under different exposure times. For the measuring sterilization and deodorization, a 6.5 L chamber and a 625 L cabinet with circulation systems were used. Two bacteria (Staphylococcus aureus KCTC1916 and Escherichia coli KCTC 1682) that were artificially inoculated in the plate respectively were put into the 6.5 L chamber and the 625 L cabinet. The $ClO_2$ gas was produced by ampules. In the 6.5 L chamber, neither of the two bacteria was detected after 24 hours treatment by $ClO_2$ gas. Moreover, the deodorization rate against ammonia and phenol was 94% and 70%, respectively, but deodorization against formaldehyde was not effective. When the concentration reached maximum (6 ampule, 4.6 ppm) levels in the cabinet, it lasted for approximately 2 h and then decreased slowly. When a circulator was used, the gas concentration was very low (6 ampule, 0.8 ppm) and the antibacterial activity against S. aureus and E. coli was low. The level of reduction against S. aureus and E. coli was 2.98 log CFU/plate and 6.06 log CFU/plate, respectively, in the cabinet after 24 h without a circulator. The reduction against S. aureus KCTC1916 and E. coli KCTC1682 was 2.69 log CFU/plate and 4.41 log CFU/plate for 24 h, respectively.

키워드

참고문헌

  1. Merenyi, G., Lind, J., Shen, X.: Electron transfer from indoles, phenol, and sulfite (SO32-) to chlorine dioxide. J. Phys. Chem., 92, 134-1370 (1988). https://doi.org/10.1021/j100312a029
  2. Harrington, R.M., Shertzer, H.G., Bercz, J.P.: Effects of $ClO_2$ on the absorption and distribution of dietary iodide in the rat. Fundam Appl. Toxicol., 5, 672-678 (1985). https://doi.org/10.1016/0272-0590(85)90191-5
  3. Aieta, E.M. and Berg, J.D.: A review of chlorine dioxide in drinking water treatment. J. Am. Water Works Assoc., 78, 62-72 (1986). https://doi.org/10.1002/j.1551-8833.1986.tb05766.x
  4. Nario, O., Takashi, S.: Protective effect of low-concenration chlorine dioxide gas against influenza A virus infection. J. Gen. Virol., 83, 60-67 (2008).
  5. Hoehn, R.C., Ellenberger, C.S., Gallagher, D.L., Benninger, E.T.V., Benninger, R.W., Rosenblatt, A.: $ClO_2$ and by-product persistence in a drinking water system. J. Am. Water Works Assoc., 95, 141-150 (2003). https://doi.org/10.1002/j.1551-8833.2003.tb10340.x
  6. Han, Y., Linton, R.H., Nielsen, S.S., Nelson, P.E.: Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7 degrees C. J. Food Prot., 64, 1730-1738 (2001). https://doi.org/10.4315/0362-028X-64.11.1730
  7. Gomez-Lopeza, V.M., Rajkovicb, A., Ragaertb, P., Smigicb, N., Devlieghere, F.: Chlorine dioxide for minimally processed produce preservation: a review. Trends in Food Sci. & Technol., 20, 17-26 (2009). https://doi.org/10.1016/j.tifs.2008.09.005
  8. Du, J., Han, Y., Linton, R.H.: Efficacy of chlorine dioxide gas in reducing Escherichia coli O157:H7 on apples surfaces. Food Microbiol., 20, 583-591 (2003). https://doi.org/10.1016/S0740-0020(02)00129-6
  9. Lee S.C., Jang, Y.S.: Design of a shoe rack for effective sterilization and decolorization of the shoes contaminated by various bacteria. JKAIS(???)., 17, 199-206 (2016)
  10. Han,Y., Guentert*, A. M., Smith, R. S., Linton, R. H. and Nelson, P. E.: Efficacy of chlorine dioxide gas as a sanitizer for tanks used for aseptic juice storage. Food Microbiol., 16, 53-61 (1999). https://doi.org/10.1006/fmic.1998.0211
  11. Woo, S.C., Ahn, B.J., Kim, Y.S., Kang, H., Lee, J., Lee, Y.S.: Quality changes of cherry tomato with different chlorine dioxide ($ClO_2$) gas treatments during storage. J. Packaging Technol Sci., 19, 17-27 (2013).
  12. Lee, H.S., Shim, W.B, An, H.M., Ha, J.H., Lee E.S., Kim W.L., Kim H.Y., Kim S.R.: Antimicrobial effects of chlorine dioxide gas on pathogenic Escherichia coli and Salmonella spp. colonizing on strawberries for export. J. Food Hyg. Saf., 31, 451-457 (2016). https://doi.org/10.13103/JFHS.2016.31.6.451
  13. Song, J.I., Jeon J.H., Lee J.Y., Park K.H., Cho S.B., Hwang Y.H., Kim D.H.: Conducted to verify the effect of chlorine dioxide ($ClO_2$) on odor reduction at a compost facility. J. Hous. Built Environ., 18, 1-6 (2012). https://doi.org/10.1023/A:1022429825185
  14. Kaye V.Sy., Melinda B., Murray, M., David H., Larry R. Beuchat.: Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh cut produce. J. Food Prot., 68, 176-1187 (2005).
  15. Hwang H.J., Yu J.S., Lee H.Y., Kwon D.J., Han W., Heo S.I., Kim S.Y.: Evaluations on deodorization effect and anti-oral microbial activity of essential oil from pinus koraiensis. Kor. J. Plant Res., 27, 1-10 (2014). https://doi.org/10.7732/kjpr.2014.27.1.001
  16. Singh N., Singh R.K., Bhunia A.K., Stroshine R.L.: Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm. Wiss. Technol., 35, 720-729 (2002). https://doi.org/10.1006/fstl.2002.0933
  17. Lee S.C., Jang Y.S.: Design of a shoe rack for effective sterilization and deodorization of the shoes contaminated by various bacteria. JKAIS, 17, 199-206 (2016).
  18. Park S.Y., Sung K.J.: Plant effects on indoor formaldehyde concentration. J. Environ. Sci., 16, 197-202 (2007).
  19. Sun X., Zhou B., Luo Y., Ference C., Baldwin E., Harrison K., Bai J.H.: Effect of controlled release chlorine dioxide on the quality and safety of cherry/grape tomatoes. J. Food control, 82, 26-30 (2017). https://doi.org/10.1016/j.foodcont.2017.06.021
  20. Chung C.C., Huang T.C., Shen F.Y., Chen H.H.: Bactericidal effects of fresh-cut vegetables and fruits after subsequent washing with chlorine dioxide. ICFEB 2011, Singapore (2011).
  21. Choi M.R., Lee S.Y.: Inhibitory effects of chlorine dioxide and a commercial chlorine sanitizer against foodborne pathogens on lettuce. Korean J. Food Cookery Sci., 24, 445-451 (2008).
  22. Du J., Han Y., Linton R. H.: Inactivation by chlorine dioxide gas ($ClO_2$) of Listeria monocytogenes spotted onto different apple surfaces. J. Food Prot., 19, 481-490 (2002).