Fig. 1. Schematic representation of the extraction of PGBC from steam-dried ginseng berry.
Fig. 2. HPLC chromatogram of PGBC.
Fig. 3. Acetylcholinestrase (AChE) inhibitory activity.
Fig. 4. Passive avoidance performances.
Fig. 5. Morris water-maze performances.
Fig. 6. Effects of PGBC on the brain acetylcholine concentration in Aβ42-challenged mice.
Fig. 7. Cytotoxicity of Aβ42 (7 μM) and PGBC (0.1-500 μg/mL) in F3.ChAT human neural stem cells.
Fig. 8. Cytoprotective effects of PGBC (0.1-50 μg/mL) in the presence of Aβ42 (15 μM) in F3.ChAT human neural stem cells.
Fig. 9. Facilitation of choline acetyltransferase (ChAT) gene expression in F3.ChAT neural stem cells by PGBC and major ginsenosides (Re, Rd and Rg3) contained in PGBC.
Fig. 10. Effects of PGBC and epigallocatechin gallate (EGCG) on the activation of GFAP positive astrocytes (green) in Aβ42- challenged mice.
Fig. 11 Numbers of GFAP positive astrocytes in Aβ42-challenged mice.
Table 1. Test groups for the efficacy evaluation of PGBC and EGCF in Aβ-induced dementia mouse model
Table 2. Composition of the control and treatment groups
Table 3. Primer sequences used for real-time qPCR
Table 4. Profiles of ginsenosides analyzed from pre- and post-fermentation of PGBC (LOD, limit of detection) (μg/mg)
References
- Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer's disease. Biomed. Pharmacother. 106: 553-565 (2018) https://doi.org/10.1016/j.biopha.2018.06.147
- Augustinsson KB, Nachmansohn D. Distinction between acetylcholine-esterase and other choline ester-splitting enzymes. Science 110: 98-99 (1949) https://doi.org/10.1126/science.110.2847.98
- Bartus RT, Dean RL, Beer B, Lippa A. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-414 (1982) https://doi.org/10.1126/science.7046051
- Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res. 236: 186-193 (2013) https://doi.org/10.1016/j.bbr.2012.08.039
- Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J. Vis. Exp. 20: e2920 (2011)
- Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci. 18: 8038-8046 (1998) https://doi.org/10.1523/JNEUROSCI.18-19-08038.1998
- Campoy FJ, Vidal CJ, Munoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Ceron S. Cholinergic system and cell proliferation. Chem. Biol. Interact. 259: 257-265 (2016) https://doi.org/10.1016/j.cbi.2016.04.014
- Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent Cancer 19: 12:36 (2017).
- Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 11: 315-335 (2013) https://doi.org/10.2174/1570159X11311030006
- de Smet PA. Herbal remedies. New Engl. J. Med. 347: 2046-2056 (2002) https://doi.org/10.1056/NEJMra020398
- Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer's disease. Expert. Rev. Neurother. 12: 1351-1365 (2012) https://doi.org/10.1586/ern.12.124
- Gil-Bea FJ, Garcia-Alloza M, Dominguez J, Marcos B, Ramirez MJ. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neurosci. Lett. 375: 37-41 (2005) https://doi.org/10.1016/j.neulet.2004.10.062
- Glynn-Servedio BE, Ranola TS. AChE inhibitors and NMDA receptor antagonists in advanced Alzheimer's disease. Consult. Pharm. 32: 511-518 (2017) https://doi.org/10.4140/TCP.n.2017.511
- Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356 (2002) https://doi.org/10.1126/science.1072994
- Hasselmo ME. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16: 710-715 (2006) https://doi.org/10.1016/j.conb.2006.09.002
- Hasselmo ME, Anderson BP, Bower JM. Cholinergic modulation of cortical associative memory function. J. Neurophysiol. 67: 1230-1246 (1992) https://doi.org/10.1152/jn.1992.67.5.1230
- Hou YL, Tsai YH, Lin YH, Chao JCJ. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med. 14: 415 (2014) https://doi.org/10.1186/1472-6882-14-415
- Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274: 99-102 (1996) https://doi.org/10.1126/science.274.5284.99
- Jang SK, Par JS, Ahn JW, Jo BR, Kim HS, Kim JH, Kim SY, Park JY, Lee DI, Park HY, Joo SS. Antihepatotoxic effect of ethanol extracts from steam-dried ginseng berry on d-galactosamine/lipopolysaccharide-sensitized mice. Korean J. Food Sci. Technol. 49: 676-684 (2017) https://doi.org/10.9721/KJFST.2017.49.6.676
-
Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS. An A
${\beta}$ 42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and A${\beta}$ -degrading enzymes in microglia. Eur. J. Pharmacol. 758: 1-10 (2015) https://doi.org/10.1016/j.ejphar.2015.03.071 - Jeong HG, Han CS. Diagnosis and treatment of dementia in primary care. J. Korean Med. Assoc. 56: 1104-1112 (2013) https://doi.org/10.5124/jkma.2013.56.12.1104
- Kim YJ, Han WJ, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and etaanalysis. J Korean Med. Sci. 29: 903-912 (2014a) https://doi.org/10.3346/jkms.2014.29.7.903
- Kim ST, Kim HJ, Jang SK, Lee DI, Joo SS. Establishment of optimal fermentation conditions for steam-dried ginseng berry via friendly bacteria and its antioxidant activities. Korean J. Food Sci. Technol. 45: 77-83 (2013) https://doi.org/10.9721/KJFST.2013.45.1.77
- Kim ST, Kim HB, Lee KH, Choi YR, Kim HJ, Shin IS, Gyoung YS, Joo SS. Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J. Agric. Food Chem. 60: 5438-5445 (2012) https://doi.org/10.1021/jf300460g
- Kim MW, Ko SR, Choi KJ, Kim SC. Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J. Ginseng Sci. 11: 10-16 (1987)
- Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, Yang HO. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. Biol. Pharm. Bull. 31: 826-830 (2008) https://doi.org/10.1248/bpb.31.826
- Kim MS, Yu JM, Kim HJ, Kim HB, Kim ST, Jang SK, Choi YW, Lee DI, Joo SS. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biol. Pharm. Bull. 37: 826-33 (2014b) https://doi.org/10.1248/bpb.b14-00011
- Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 55: 1522-1527 (2007) https://doi.org/10.1248/cpb.55.1522
- Konishi K, Hori K, Tani M, Tomioka H, Kitajima Y, Akashi N, Inamoto A, Kurosawa K, Yuda H, Hanashi T, Ouchi H, Hosoi M, Hachisu M. Hypothesis of endogenous anticholinergic activity in Alzheimer's disease. Neurodegener. Dis. 15: 149-156 (2015) https://doi.org/10.1159/000381511
- Lee SJ, Kim Y, Kim MG. Changes in the ginsenoside content during the fermentation process using microbial strains. J. Ginseng Res. 39: 392-397 (2015) https://doi.org/10.1016/j.jgr.2015.05.005
- Liu WK, Xu SX, Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67: 1297-1306 (2000) https://doi.org/10.1016/S0024-3205(00)00720-7
- Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T. Further studies on the dammarane-saponins of ginseng roots. Chem. Pharm. Bull. 32: 1188-1192 (1984) https://doi.org/10.1248/cpb.32.1188
- McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's Disease. Neurology 34: 939-944 (1984) https://doi.org/10.1212/WNL.34.7.939
- Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer's disease. Int. J. Alzheimers Dis. 2012: 728983 (2012)
- Miranda MI, Bermudez-Rattoni F. Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc. Natl. Acad. Sci. U.S.A 96: 6478-6482 (1999) https://doi.org/10.1073/pnas.96.11.6478
-
Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Sara Soleimani Asl. Effect of amyloid
${\beta}$ -peptide on passive avoidance learning in rats: a behavioral study. Avicenna J. Neuro. Psych. Physio. 1: e18664 (2004) - Park SH, Lee JH. National dementia research and development project. J. Korean Med. Assoc. 61: 304-308 (2018) https://doi.org/10.5124/jkma.2018.61.5.304
- Park D, Yang G, Bae DK, Lee SH, Yang YH, Kyung J, Kim D, Choi EK, Choi KC, Kim SU, Kang SK, Ra JC, Kim YB. Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J. Neurosci. Res. 91: 660-70 (2013) https://doi.org/10.1002/jnr.23182
- Querfurth HW, LaFeria FM. Alzheimer's disease. New Engl. J. Med. 362: 329-344 (2010) https://doi.org/10.1056/NEJMra0909142
- Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol. Diagn. Ther. 16: 79-92 (2012) https://doi.org/10.1007/BF03256432
- Serrano-Pozo, A, Gomez-Isla T, Growdon JH, Frosch MP, Hyman BT. Aphenotypic change but not proliferation underlies glial responses in Alzheimerdisease. Am. J. Pathol. 182: 2332-2344 (2013) https://doi.org/10.1016/j.ajpath.2013.02.031
- Shibata S, Fujita M, Itokawa H, Tanako O, Ishii T. Studies on the constituents of Japanese and Chinese crude frugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem. Pharm. Bull. 11: 759-761 (1963) https://doi.org/10.1248/cpb.11.759
- Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB; MRC Cognitive Function and Ageing Neuropathology Study Group. Astrocyte phenotype in relation to Alzheimer-typepathology in the ageing brain. Neurobiol. Aging 31: 578-590 (2010) https://doi.org/10.1016/j.neurobiolaging.2008.05.015
- Sugita S, Fleming LL, Wood C, Vaughan SK, Gomes MP, Camargo W, Naves LA, Prado VF, Prado MA, Guatimosim C, Valdez G. VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skelet. Muscle. 6: 31 (2016) https://doi.org/10.1186/s13395-016-0105-7
- Tata AM, Velluto L, D'angelo C, Reale M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol. Disord. Drug Targets 13: 1294-1303 (2014) https://doi.org/10.2174/1871527313666140917121132
- Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J. Neurosci. 4:167-186 (1994)
- Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AM. A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS One 11: e0147733 (2016) https://doi.org/10.1371/journal.pone.0147733
- Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. U.S.A 83: 4040-4043 (1986) https://doi.org/10.1073/pnas.83.11.4040
- Xu TM, Xin Y, Cui MH, Jiang X, Gu LP. Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer. Chinese Med. J. (Engl.) 120: 584-588 (2007) https://doi.org/10.1097/00029330-200704010-00011
-
Yang JW, Kim SS. Ginsenoside Rc promotes antiadipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBP
${\alpha}$ and PPARA${\gamma}$ . Molecules 20: 1293-1303 (2015) https://doi.org/10.3390/molecules20011293 - Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J. Ginseng Res. 37: 80-86 (2013) https://doi.org/10.5142/jgr.2013.37.80
- Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res. 41: 127-133 (2017) https://doi.org/10.1016/j.jgr.2016.02.001