DOI QR코드

DOI QR Code

Double-processed ginseng berry extracts enhance learning and memory in an Aβ42-induced Alzheimer's mouse model

Aβ42로 유도된 알츠하이머 마우스 모델에서 이중 가공 인삼열매 추출물의 학습 및 기억 손실 개선 효과

  • Jang, Su Kil (College of Life Science, Gangneung-Wonju National University) ;
  • Ahn, Jeong Won (College of Life Science, Gangneung-Wonju National University) ;
  • Jo, Boram (College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Hyun Soo (College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Seo Jin (College of Life Science, Gangneung-Wonju National University) ;
  • Sung, Eun Ah (College of Life Science, Gangneung-Wonju National University) ;
  • Lee, Do Ik (College of Pharmacy, Chung-Ang University) ;
  • Park, Hee Yong (College of Pharmacy, Chung-Ang University) ;
  • Jin, Duk Hee (College of Life Science, Gangneung-Wonju National University) ;
  • Joo, Seong Soo (College of Life Science, Gangneung-Wonju National University)
  • 장수길 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 안정원 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 조보람 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김현수 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김서진 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 성은아 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 이도익 (중앙대학교 약학대학 면역질환연구실) ;
  • 박희용 (중앙대학교 약학대학 면역질환연구실) ;
  • 진덕희 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 주성수 (강릉원주대학교 생명과학대학 생물의약신소재연구실)
  • Received : 2019.02.07
  • Accepted : 2019.03.26
  • Published : 2019.04.30

Abstract

This study aimed to determine whether double-processed ginseng berry extract (PGBC) could improve learning and memory in an $A\hat{a}42$-induced Alzheimer's mouse model. Passive avoidance test (PAT) and Morris water-maze test (MWMT) were performed after mice were treated with PGBC, followed by acetylcholine (ACh) measurement and glial fibrillary acidic protein (GFAP) detection for brain damage. Furthermore, acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression were analyzed using Ellman's and qPCR assays, respectively. Results demonstrated that PGBC contained a high amount of ginsenosides (Re, Rd, and Rg3), which are responsible for the clearance of $A{\hat{a}} 42$. They also helped to significantly improve PAT and MWMT performance in the $A{\hat{a}} 42-induced$ Alzheimer's mouse model when compared to the normal group. Interestingly, ACh and ChAT were remarkably upregulated and AChE activities were significantly inhibited, suggesting PGBC to be a palliative adjuvant for treating Alzheimer's disease. Altogether, PGBC was found to play a positive role in improving cognitive abilities. Thus, it could be a new alternative solution for alleviating Alzheimer's disease symptoms.

AD는 뇌의 신경세포 사멸뿐만 아니라 학습 및 기억능 소실을 초래하는 퇴행성 뇌 질환이며, 기억과 관련된 주요 뇌 구역인 해마(hippocampus)는 콜린성 조절(cholinergic modulation)에 의해 영향을 받는다(Konishi 등, 2015). AD 병인에 대한 다양한 해석과 설명이 있으나 크게는 amyloid cascade hypothesis과 함께 cholinergic hypothesis가 주류를 이루고 있다. 몇몇의 연구에서 ChAT 합성, ACh 분비, nicotin 및 muscarinic 수용체 감소가 AD 뇌의 대뇌피질과 해마에서 관찰되어(Tata 등, 2014) 퇴행성 뇌질환에서의 중요성이 제시되었고, 이를 배경으로 한 acetylcholinesterase inhibitors (AChEI)가 AD 증상 완화의 목적으로 미국 FDA로부터 승인되어 시판되고 있다. 본 연구에서는 인삼의 활성 성분인 진세노사이드가 다량 함유된 PGBC가 $A{\beta}42$로 유도된 치매 모델에서 뇌세포 보호, ACh 분비 증가, 학습력/기억력 증가, ChAT 발현 증가를 확인하여 인삼열매 추출물의 치매 적용 여부를 확인하고자 하였다. 결과에서 언급한 바와 같이 PGBC는 익기 직전의 4년근 인삼 열매에 추출 및 발효 단계를 추가하여 확보된 물질로서, $A{\beta}42$ 섭취, 제거 및 ACh 분비 촉진 활성이 있는 Re, Rd, Rg3 함량이 증가되어(Kim 등, 2014; Jang 등, 2015), PGBC 자체로서 치매 인자에 대한 조절 효능이 예측되었다. 특히, 7증 7포 및 발효과정을 거친 이중가공 인삼 열매 추출물이 비 발효 증포 추출물에 비해 Rg3가 현저히 증가하는 사전 연구결과와 Rg3가 $A{\beta}42$ 제거 활성을 가지는 것으로 확인된 결과를 종합할 때 PGBC 투여가 AD 증상 완화의 조절자 역할을 할 것으로 생각된다(Kim 등, 2013; Jang 등 2015). 본 연구에 따르면, 마우스 치매 모델에 PGBC 처리 시 PAT 및 Morris water-maze test를 통해 대조군 대비 유의한 수준의 인지능력 개선, ACh 합성을 유도하는 ChAT 유전자 발현 증가, ACh 분비량 증가 등이 확인되어 전체적인 인지능 개선에 극적인 영향을 준 것으로 판단된다. 특히 $A{\beta}42$를 뇌 실로 주입(intracranial injection) 하여 나타나는 뇌세포 손상이 PGBC 투여를 통해 보호된 것으로 사료되었으며, 이는 주요 뇌세포 중 하나인 성상세포에서 관찰되는 GFAP 분석을 통해 확인되었다. 뇌 균질액을 이용한 AChE 활성 연구에서도 PGBC가 AChE를 현저하게 저해하는 것으로 확인되어, AD 환자에게 처방이 가능한 2대 의약품 군중 하나인 시냅스 내 신경전달물질 ACh bioavailability 증가 목적의 처방 보조요법 적용이 기대된다(${\check{C}}olovi{\acute{c}}$ 등, 2013). 결론적으로, 본 연구에 사용된 PGBC는 학습 및 기억력을 개선하는 활성물질을 포함하고 있어 1차적인 퇴행성 뇌질환 보조재로서 직간접적인 대증요법 역할과 2차적으로는 뇌 세포 보호를 통한 질병 악화 지연 소재로 개발이 기대되며, 보다 심도 있는 기전연구를 통해 천연물 신소재 개발도 가능할 것으로 사료된다.

Keywords

SPGHB5_2019_v51n2_160_f0001.png 이미지

Fig. 1. Schematic representation of the extraction of PGBC from steam-dried ginseng berry.

SPGHB5_2019_v51n2_160_f0002.png 이미지

Fig. 2. HPLC chromatogram of PGBC.

SPGHB5_2019_v51n2_160_f0003.png 이미지

Fig. 3. Acetylcholinestrase (AChE) inhibitory activity.

SPGHB5_2019_v51n2_160_f0004.png 이미지

Fig. 4. Passive avoidance performances.

SPGHB5_2019_v51n2_160_f0005.png 이미지

Fig. 5. Morris water-maze performances.

SPGHB5_2019_v51n2_160_f0006.png 이미지

Fig. 6. Effects of PGBC on the brain acetylcholine concentration in Aβ42-challenged mice.

SPGHB5_2019_v51n2_160_f0007.png 이미지

Fig. 7. Cytotoxicity of Aβ42 (7 μM) and PGBC (0.1-500 μg/mL) in F3.ChAT human neural stem cells.

SPGHB5_2019_v51n2_160_f0008.png 이미지

Fig. 8. Cytoprotective effects of PGBC (0.1-50 μg/mL) in the presence of Aβ42 (15 μM) in F3.ChAT human neural stem cells.

SPGHB5_2019_v51n2_160_f0009.png 이미지

Fig. 9. Facilitation of choline acetyltransferase (ChAT) gene expression in F3.ChAT neural stem cells by PGBC and major ginsenosides (Re, Rd and Rg3) contained in PGBC.

SPGHB5_2019_v51n2_160_f0010.png 이미지

Fig. 10. Effects of PGBC and epigallocatechin gallate (EGCG) on the activation of GFAP positive astrocytes (green) in Aβ42- challenged mice.

SPGHB5_2019_v51n2_160_f0011.png 이미지

Fig. 11 Numbers of GFAP positive astrocytes in Aβ42-challenged mice.

Table 1. Test groups for the efficacy evaluation of PGBC and EGCF in Aβ-induced dementia mouse model

SPGHB5_2019_v51n2_160_t0001.png 이미지

Table 2. Composition of the control and treatment groups

SPGHB5_2019_v51n2_160_t0002.png 이미지

Table 3. Primer sequences used for real-time qPCR

SPGHB5_2019_v51n2_160_t0003.png 이미지

Table 4. Profiles of ginsenosides analyzed from pre- and post-fermentation of PGBC (LOD, limit of detection) (μg/mg)

SPGHB5_2019_v51n2_160_t0004.png 이미지

References

  1. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer's disease. Biomed. Pharmacother. 106: 553-565 (2018) https://doi.org/10.1016/j.biopha.2018.06.147
  2. Augustinsson KB, Nachmansohn D. Distinction between acetylcholine-esterase and other choline ester-splitting enzymes. Science 110: 98-99 (1949) https://doi.org/10.1126/science.110.2847.98
  3. Bartus RT, Dean RL, Beer B, Lippa A. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-414 (1982) https://doi.org/10.1126/science.7046051
  4. Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res. 236: 186-193 (2013) https://doi.org/10.1016/j.bbr.2012.08.039
  5. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J. Vis. Exp. 20: e2920 (2011)
  6. Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci. 18: 8038-8046 (1998) https://doi.org/10.1523/JNEUROSCI.18-19-08038.1998
  7. Campoy FJ, Vidal CJ, Munoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Ceron S. Cholinergic system and cell proliferation. Chem. Biol. Interact. 259: 257-265 (2016) https://doi.org/10.1016/j.cbi.2016.04.014
  8. Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent Cancer 19: 12:36 (2017).
  9. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 11: 315-335 (2013) https://doi.org/10.2174/1570159X11311030006
  10. de Smet PA. Herbal remedies. New Engl. J. Med. 347: 2046-2056 (2002) https://doi.org/10.1056/NEJMra020398
  11. Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer's disease. Expert. Rev. Neurother. 12: 1351-1365 (2012) https://doi.org/10.1586/ern.12.124
  12. Gil-Bea FJ, Garcia-Alloza M, Dominguez J, Marcos B, Ramirez MJ. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neurosci. Lett. 375: 37-41 (2005) https://doi.org/10.1016/j.neulet.2004.10.062
  13. Glynn-Servedio BE, Ranola TS. AChE inhibitors and NMDA receptor antagonists in advanced Alzheimer's disease. Consult. Pharm. 32: 511-518 (2017) https://doi.org/10.4140/TCP.n.2017.511
  14. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356 (2002) https://doi.org/10.1126/science.1072994
  15. Hasselmo ME. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16: 710-715 (2006) https://doi.org/10.1016/j.conb.2006.09.002
  16. Hasselmo ME, Anderson BP, Bower JM. Cholinergic modulation of cortical associative memory function. J. Neurophysiol. 67: 1230-1246 (1992) https://doi.org/10.1152/jn.1992.67.5.1230
  17. Hou YL, Tsai YH, Lin YH, Chao JCJ. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med. 14: 415 (2014) https://doi.org/10.1186/1472-6882-14-415
  18. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274: 99-102 (1996) https://doi.org/10.1126/science.274.5284.99
  19. Jang SK, Par JS, Ahn JW, Jo BR, Kim HS, Kim JH, Kim SY, Park JY, Lee DI, Park HY, Joo SS. Antihepatotoxic effect of ethanol extracts from steam-dried ginseng berry on d-galactosamine/lipopolysaccharide-sensitized mice. Korean J. Food Sci. Technol. 49: 676-684 (2017) https://doi.org/10.9721/KJFST.2017.49.6.676
  20. Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS. An A${\beta}$42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and A${\beta}$-degrading enzymes in microglia. Eur. J. Pharmacol. 758: 1-10 (2015) https://doi.org/10.1016/j.ejphar.2015.03.071
  21. Jeong HG, Han CS. Diagnosis and treatment of dementia in primary care. J. Korean Med. Assoc. 56: 1104-1112 (2013) https://doi.org/10.5124/jkma.2013.56.12.1104
  22. Kim YJ, Han WJ, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and etaanalysis. J Korean Med. Sci. 29: 903-912 (2014a) https://doi.org/10.3346/jkms.2014.29.7.903
  23. Kim ST, Kim HJ, Jang SK, Lee DI, Joo SS. Establishment of optimal fermentation conditions for steam-dried ginseng berry via friendly bacteria and its antioxidant activities. Korean J. Food Sci. Technol. 45: 77-83 (2013) https://doi.org/10.9721/KJFST.2013.45.1.77
  24. Kim ST, Kim HB, Lee KH, Choi YR, Kim HJ, Shin IS, Gyoung YS, Joo SS. Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J. Agric. Food Chem. 60: 5438-5445 (2012) https://doi.org/10.1021/jf300460g
  25. Kim MW, Ko SR, Choi KJ, Kim SC. Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J. Ginseng Sci. 11: 10-16 (1987)
  26. Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, Yang HO. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. Biol. Pharm. Bull. 31: 826-830 (2008) https://doi.org/10.1248/bpb.31.826
  27. Kim MS, Yu JM, Kim HJ, Kim HB, Kim ST, Jang SK, Choi YW, Lee DI, Joo SS. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biol. Pharm. Bull. 37: 826-33 (2014b) https://doi.org/10.1248/bpb.b14-00011
  28. Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 55: 1522-1527 (2007) https://doi.org/10.1248/cpb.55.1522
  29. Konishi K, Hori K, Tani M, Tomioka H, Kitajima Y, Akashi N, Inamoto A, Kurosawa K, Yuda H, Hanashi T, Ouchi H, Hosoi M, Hachisu M. Hypothesis of endogenous anticholinergic activity in Alzheimer's disease. Neurodegener. Dis. 15: 149-156 (2015) https://doi.org/10.1159/000381511
  30. Lee SJ, Kim Y, Kim MG. Changes in the ginsenoside content during the fermentation process using microbial strains. J. Ginseng Res. 39: 392-397 (2015) https://doi.org/10.1016/j.jgr.2015.05.005
  31. Liu WK, Xu SX, Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67: 1297-1306 (2000) https://doi.org/10.1016/S0024-3205(00)00720-7
  32. Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T. Further studies on the dammarane-saponins of ginseng roots. Chem. Pharm. Bull. 32: 1188-1192 (1984) https://doi.org/10.1248/cpb.32.1188
  33. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's Disease. Neurology 34: 939-944 (1984) https://doi.org/10.1212/WNL.34.7.939
  34. Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer's disease. Int. J. Alzheimers Dis. 2012: 728983 (2012)
  35. Miranda MI, Bermudez-Rattoni F. Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc. Natl. Acad. Sci. U.S.A 96: 6478-6482 (1999) https://doi.org/10.1073/pnas.96.11.6478
  36. Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Sara Soleimani Asl. Effect of amyloid ${\beta}$-peptide on passive avoidance learning in rats: a behavioral study. Avicenna J. Neuro. Psych. Physio. 1: e18664 (2004)
  37. Park SH, Lee JH. National dementia research and development project. J. Korean Med. Assoc. 61: 304-308 (2018) https://doi.org/10.5124/jkma.2018.61.5.304
  38. Park D, Yang G, Bae DK, Lee SH, Yang YH, Kyung J, Kim D, Choi EK, Choi KC, Kim SU, Kang SK, Ra JC, Kim YB. Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J. Neurosci. Res. 91: 660-70 (2013) https://doi.org/10.1002/jnr.23182
  39. Querfurth HW, LaFeria FM. Alzheimer's disease. New Engl. J. Med. 362: 329-344 (2010) https://doi.org/10.1056/NEJMra0909142
  40. Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol. Diagn. Ther. 16: 79-92 (2012) https://doi.org/10.1007/BF03256432
  41. Serrano-Pozo, A, Gomez-Isla T, Growdon JH, Frosch MP, Hyman BT. Aphenotypic change but not proliferation underlies glial responses in Alzheimerdisease. Am. J. Pathol. 182: 2332-2344 (2013) https://doi.org/10.1016/j.ajpath.2013.02.031
  42. Shibata S, Fujita M, Itokawa H, Tanako O, Ishii T. Studies on the constituents of Japanese and Chinese crude frugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem. Pharm. Bull. 11: 759-761 (1963) https://doi.org/10.1248/cpb.11.759
  43. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB; MRC Cognitive Function and Ageing Neuropathology Study Group. Astrocyte phenotype in relation to Alzheimer-typepathology in the ageing brain. Neurobiol. Aging 31: 578-590 (2010) https://doi.org/10.1016/j.neurobiolaging.2008.05.015
  44. Sugita S, Fleming LL, Wood C, Vaughan SK, Gomes MP, Camargo W, Naves LA, Prado VF, Prado MA, Guatimosim C, Valdez G. VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skelet. Muscle. 6: 31 (2016) https://doi.org/10.1186/s13395-016-0105-7
  45. Tata AM, Velluto L, D'angelo C, Reale M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol. Disord. Drug Targets 13: 1294-1303 (2014) https://doi.org/10.2174/1871527313666140917121132
  46. Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J. Neurosci. 4:167-186 (1994)
  47. Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AM. A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS One 11: e0147733 (2016) https://doi.org/10.1371/journal.pone.0147733
  48. Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. U.S.A 83: 4040-4043 (1986) https://doi.org/10.1073/pnas.83.11.4040
  49. Xu TM, Xin Y, Cui MH, Jiang X, Gu LP. Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer. Chinese Med. J. (Engl.) 120: 584-588 (2007) https://doi.org/10.1097/00029330-200704010-00011
  50. Yang JW, Kim SS. Ginsenoside Rc promotes antiadipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBP${\alpha}$ and PPARA${\gamma}$. Molecules 20: 1293-1303 (2015) https://doi.org/10.3390/molecules20011293
  51. Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J. Ginseng Res. 37: 80-86 (2013) https://doi.org/10.5142/jgr.2013.37.80
  52. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res. 41: 127-133 (2017) https://doi.org/10.1016/j.jgr.2016.02.001