FIGURE 1. Enneper surfaces over the intervals -1 ≤ u ≤ 1and -1 ≤ v ≤ 1: (a) Ω1; (b) Σ1; (c) Σ∗1. These surfaces arerespectively parameterized by Ψk, Φk and Φ∗ k, when k = 1.
FIGURE 2. r(t) from Example 3.1, over the interval 0 ≤ t ≤ 1,and images of the Enneper surfaces produced by the mappingsΨ1, Φ1 and Φ∗1 in ℝ2,1: (a) r(t), (b) Ψ1(r(t)), (c) Φ1(r(t)), and(d) Φ∗1(r(t)).
FIGURE 3. Projection of the region of
FIGURE 4. MPH interpolants satisfying
FIGURE 5. PH quintic interpolants in ℝ2 satisfying
FIGURE 6. MPH interpolants which pass through the junction-point p∗ = (
TABLE 1. Comparison of the bending energies and arc-lengths of the interpolants shown in Fig. 5.
References
-
G. Albrecht and R. T. Farouki, Construction of
$C^2$ Pythagorean-hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417-442. https://doi.org/10.1007/BF02124754 - H. I. Choi, S. W. Choi, and H. P. Moon, Mathematical theory of medial axis transform, Pacific J. Math. 181 (1997), no. 1, 57-88. https://doi.org/10.2140/pjm.1997.181.57
- H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parameterization of curves and surfaces, Adv. Comput. Math. 17 (2002), no. 1-2, 5-48. https://doi.org/10.1023/A:1015294029079
- R. T. Farouki, Pythagorean-hodograph curves: algebra and geometry inseparable, Geometry and Computing, 1, Springer, Berlin, 2008.
- R. T. Farouki, C. Manni, M. L. Sampoli, and A. Sestini, Shape-preserving interpolation of spatial data by Pythagorean-hodograph quintic spline curves, IMA J. Numer. Anal. 35 (2015), no. 1, 478-498. https://doi.org/10.1093/imanum/drt072
-
R. T. Farouki, C. Manni, and A. Sestini, Shape-preserving interpolation by
$G^1$ and$G^2$ PH quintic splines, IMA J. Numer. Anal. 23 (2003), no. 2, 175-195. https://doi.org/10.1093/imanum/23.2.175 - R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589-1609. https://doi.org/10.1090/S0025-5718-1995-1308452-6
- R. T. Farouki, F. Pelosi, M. L. Sampoli, and A. Sestini, Tensor-product surface patches with Pythagorean-hodograph isoparametric curves, IMA J. Numer. Anal. 36 (2016), no. 3, 1389-1409. https://doi.org/10.1093/imanum/drv025
- R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736-752. https://doi.org/10.1147/rd.345.0736
- R. T. Farouki and Z. Sir, Rational Pythagorean-hodograph space curves, Comput. Aided Geom. Design 28 (2011), no. 2, 75-88. https://doi.org/10.1016/j.cagd.2011.01.002
-
Z. Habib and M. Sakai,
$G^2$ Pythagorean hodograph quintic transition between two circles with shape control, Comput. Aided Geom. Design 24 (2007), no. 5, 252-266. https://doi.org/10.1016/j.cagd.2007.03.004 -
G. Jaklic, J. Kozak, M. Krajnc, V. Vitrih, and E. Zagar, On interpolation by planar cubic
$G^2$ Pythagorean-hodograph spline curves, Math. Comp. 79 (2010), no. 269, 305-326. https://doi.org/10.1090/S0025-5718-09-02298-4 - G.-I. Kim and S. Lee, Pythagorean-hodograph preserving mappings, J. Comput. Appl. Math. 216 (2008), no. 1, 217-226. https://doi.org/10.1016/j.cam.2007.04.026
-
O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space
$L^3$ , Tokyo J. Math. 6 (1983), no. 2, 297-309. https://doi.org/10.3836/tjm/1270213872 -
J. H. Kong, S. P. Jeong, S. Lee, and G. Kim,
$C^1$ Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design 25 (2008), no. 4-5, 214-229. https://doi.org/10.1016/j.cagd.2007.11.006 -
J. H. Kong, H. C. Lee, and G. I. Kim,
$C^1$ Hermite interpolation with PH curves by boundary data modification, J. Comput. Appl. Math. 248 (2013), 47-60. https://doi.org/10.1016/j.cam.2013.01.016 - J. H. Kong, S. Lee, and G. Kim, Minkowski Pythagorean-hodograph preserving mappings, J. Comput. Appl. Math. 308 (2016), 166-176. https://doi.org/10.1016/j.cam.2016.05.032
-
J. Kosinka and B. Juttler,
$C^1$ Hermite interpolation by Pythagorean hodograph quintics in Minkowski space, Adv. Comput. Math. 30 (2009), no. 2, 123-140. https://doi.org/10.1007/s10444-007-9059-y - J. Kosinka and M. Lavicka, A unified Pythagorean hodograph approach to the medial axis transform and offset approximation, J. Comput. Appl. Math. 235 (2011), no. 12, 3413-3424. https://doi.org/10.1016/j.cam.2011.02.001
- J. Kosinka and M. Lavicka, Pythagorean hodograph curves: a survey of recent advances, J. Geom. Graph. 18 (2014), no. 1, 23-43.
-
J. Kosinka and Z. Sir,
$C^2$ Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation, Comput. Aided Geom. Design 27 (2010), no. 8, 631-643. https://doi.org/10.1016/j.cagd.2010.04.005 - S. Lee, H. C. Lee, M. R. Lee, S. Jeong, and G. I. Kim, Hermite interpolation using Mobius transformations of planar Pythagorean-hodograph cubics, Abstr. Appl. Anal. 2012 (2012), Art. ID 560246, 15 pp.
- H. P. Moon, Minkowski Pythagorean hodographs, Comput. Aided Geom. Design 16 (1999), no. 8, 739-753. https://doi.org/10.1016/S0167-8396(99)00016-3
- F. Pelosi, R. T. Farouki, C. Manni, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics, Adv. Comput. Math. 22 (2005), no. 4, 325-352. https://doi.org/10.1007/s10444-003-2599-x
- Z. Sir and B. Juttler, Euclidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753-770. https://doi.org/10.1016/j.cagd.2005.03.002