DOI QR코드

DOI QR Code

LIOUVILLE THEOREMS FOR GENERALIZED SYMPHONIC MAPS

  • Feng, Shuxiang (School of Mathematics and Statistics Southwest University) ;
  • Han, Yingbo (School of Mathematics and Statistics Xinyang Normal University)
  • 투고 : 2018.05.03
  • 심사 : 2018.10.12
  • 발행 : 2019.05.01

초록

In this paper, we introduce the notion of the generalized symphonic map with respect to the functional ${\Phi}_{\varepsilon}$. Then we use the stress-energy tensor to obtain some monotonicity formulas and some Liouville results for these maps. We also obtain some Liouville type results by assuming some conditions on the asymptotic behavior of the maps at infinity.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. S. Asserda, Liouville-type results for stationary maps of a class of functional related to pullback metrics, Nonlinear Anal. 75 (2012), no. 8, 3480-3492. https://doi.org/10.1016/j.na.2012.01.005
  2. P. Baird, Stress-energy tensors and the Lichnerowicz Laplacian, J. Geom. Phys. 58 (2008), no. 10, 1329-1342. https://doi.org/10.1016/j.geomphys.2008.05.008
  3. F. Bethuel, H. Brezis, and F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 123-148. https://doi.org/10.1007/BF01191614
  4. F. Bethuel, H. Brezis, and F. Helein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhauser Boston, Inc., Boston, MA, 1994.
  5. H. Brezis, F. Merle, and T. Riviere, Quantization effects for $-{\Delta}u\;=\;u(1-\left|u\right|^2)$ in $R^2$, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35-58. https://doi.org/10.1007/BF00375695
  6. S. Y. Cheng, Liouville theorem for harmonic maps, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), 147-151, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980.
  7. T. Chong, B. Cheng, Y. X. Dong, and W. Zhang, Liouville theorems for critical points of the p-Ginzberg-Landau type functional, arXiv: 1610.06301v1.
  8. Y. Dong, Monotonicity formulae and holomorphicity of harmonic maps between Kahler manifolds, Proc. Lond. Math. Soc. (3) 107 (2013), no. 6, 1221-1260. https://doi.org/10.1112/plms/pdt014
  9. Y. Dong, H. Lin, and G. Yang, Liouville theorems for F-harmonic maps and their applications, Results Math. 69 (2016), no. 1-2, 105-127. https://doi.org/10.1007/s00025-015-0480-0
  10. Y. Dong and S. W. Wei, On vanishing theorems for vector bundle valued p-forms and their applications, Comm. Math. Phys. 304 (2011), no. 2, 329-368. https://doi.org/10.1007/s00220-011-1227-8
  11. J. F. Escobar and A. Freire, The spectrum of the Laplacian of manifolds of positive curvature, Duke Math. J. 65 (1992), no. 1, 1-21. https://doi.org/10.1215/S0012-7094-92-06501-X
  12. R. E. Greene and H. Wu, Function theory on manifolds which posses pole, Lecture Notes in Mathematics, 699, Springer-veriag, Berlin, Heidelberg, New York, 1979.
  13. Y. Han and S. Feng, Monotonicity formulas and the stability of F-stationary maps with potential, Houston J. Math. 40 (2014), no. 3, 681-713.
  14. Y. Han, S. Feng, and W. Zhang, Liouville theorems for weakly F-stationary maps with potential, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 435-450.
  15. Y. B. Han, Y. Li, Y. B. Ren, and S. W. Wei, New comparison theorems in Riemannian geometry, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 2, 163-186.
  16. S. Hildebrandt, Liouville theorems for harmonic mappings, and an approach to Bernstein theorems, in Seminar on Differential Geometry, 107-131, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982.
  17. M.-C. Hong, Asymptotic behavior for minimizers of a Ginzburg-Landau-type functional in higher dimensions associated with n-harmonic maps, Adv. Differential Equations 1 (1996), no. 4, 611-634.
  18. Z. R. Jin, Liouville theorems for harmonic maps, Invent. Math. 108 (1992), no. 1, 1-10. https://doi.org/10.1007/BF02100594
  19. S. Kawai and N. Nakauchi, Some results for stationary maps of a functional related to pullback metrics, Nonlinear Anal. 74 (2011), no. 6, 2284-2295. https://doi.org/10.1016/j.na.2010.11.033
  20. S. Kawai and N. Nakauchi, Stability of stationary maps of a functional related to pullbacks of metrics, Differential Geom. Appl. 44 (2016), 161-177. https://doi.org/10.1016/j.difgeo.2015.11.005
  21. J. M. Kosterlitz and D. J. Thouless, Two dimensional physics, In: Brewer, D.F.(ed.) Progress in low temperature physics, Vol. VIIB. Amsterdam: North-Holland 1978.
  22. Y. Lei, Singularity analysis of a p-Ginzburg-Landau type minimizer, Bull. Sci. Math. 134 (2010), no. 1, 97-115. https://doi.org/10.1016/j.bulsci.2008.02.004
  23. N. Nakauchi, A variational problem related to conformal maps, Osaka J. Math. 48 (2011), no. 3, 719-741.
  24. N. Nakauchi and Y. Takenaka, A variational problem for pullback metrics, Ric. Mat. 60 (2011), no. 2, 219-235. https://doi.org/10.1007/s11587-010-0103-8
  25. D. R. Nelson, Phase transitions and critical phenomena. Vol. 7, Academic Press, Inc., London, 1983.
  26. S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and finiteness results in geometric analysis, Progress in Mathematics, 266, Birkhauser Verlag, Basel, 2008.
  27. D. Saint-James, G. Sarrna, and E. J. Thoma, Type II Superconductivity, New York, Pergamon Press, 1969.
  28. H. C. J. Sealey, Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 441-452. https://doi.org/10.1017/S030500410005948X
  29. R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333-341. https://doi.org/10.1007/BF02568161
  30. M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), no. 5-6, 1613-1624.
  31. P.Wang and X.Wang, The geometric properties of harmonic function on 2-dimensional Riemannian manifolds, Nonlinear Anal. 103 (2014), 2-8. https://doi.org/10.1016/j.na.2014.03.002
  32. P. Wang and L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal. 130 (2016), 1-17. https://doi.org/10.1016/j.na.2015.09.021