References
- Aktas, G. and Sirac Ozerdem, M. (2016), "Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model", Struct. Eng. Mech., 60(4), 655-665. https://doi.org/10.12989/sem.2016.60.4.655
- Ali, B.A., Salit, M.S., Zainudin, E.S. and Othman, M. (2015), "Integration of artificial neural network and expert system for material classification of natural fibre reinforced polymer composites", Am. J. Appl. Sci., 12(3), 174-184. https://doi.org/10.3844/ajassp.2015.174.184
- Amleh, L. (2000), "Bond deterioration of reinforcing steel in concrete due to corrosion", PhD Thesis, McGill University, Montreal.
- Blomfors, M., Ivanov, O.L., Honfi, D. and Engen, M. (2019), "Partial safety factors for the anchorage capacity of corroded reinforcement bars in concrete", Eng. Struct., 181, 579-588. https://doi.org/10.1016/j.engstruct.2018.12.011
- Bohm, M., Devinny, J., Jahani, F. and Rosen, G. (1998), "On a moving-boundary system modeling corrosion in sewer pipes", Appl. Math. Comput., 92(2-3), 247-269. https://doi.org/10.1016/S0096-3003(97)10039-X
- Buenfeld, N.R. (1997), "Measuring and modelling transport phenomena in concrete for life prediction of structures", Prediction of Concrete Durability, Eds. J. Glanville and A.M. Neville, Spon, London.
- Buenfeld, N.R. and Hassanein, N.M. (1998), "Predicting the life of concrete structures using neural networks", Proceedings of the Instn Civ. Engrs Structs & Bldgs, 128, 38-48. https://doi.org/10.1680/istbu.1998.30033
- Demuth, H. and Beale, M. (2002), Neural Network Toolbox for Use with MATLAB, The Math-Works, Inc., Natick, MA.
- Deo, R.C., Ghorbani, M.A., Samadianfrad, S., Maraseni, T., Bilgili, M. and Biazar, M. (2017), "Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data", Renew. Energy, 116, 309-323. https://doi.org/10.1016/j.renene.2017.09.078
- Erdem, R.T., Kantar, E., Gucuyen, E. and Anil, O. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. https://doi.org/10.12989/cac.2013.12.5.613
- Hassanein, N.M. (1996), "The application of neural networks to service life prediction of concrete structures", PhD Thesis, University of London, London.
- Karray, F. and De Silva, C. (2004), Soft Computing and Intelligent Systems Design, Addison Wesley Publishing, Pearson Education, England.
- Keskin, R.S.O. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ann model", Struct. Eng. Mech., 61(5), 605-615. https://doi.org/10.12989/sem.2017.61.5.605
- Kranc, S.C. and Sagues, A.A. (2001), "Detailed modeling of corrosion macrocells on steel reinforcing in concrete", Corros. Sci., 43(7), 1355-1372. https://doi.org/10.1016/S0010-938X(00)00158-X
- Liu, T. and Weyers, R.W. (1998), "Modeling the dynamic corrosion process in chloride contaminated concrete structures", Cement Concrete Res., 28(3), 365-379. https://doi.org/10.1016/S0008-8846(98)00259-2
- Mancini, G., Carbone, V.I., Bertagnoli, G. and Gino, D. (2018), "Reliability-based evaluation of bond strength for tensed lapped joints and anchorages in new and existing reinforced concrete structures", Struct. Concrete, 19(3), 904-917. https://doi.org/10.1002/suco.201700082
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59. https://doi.org/10.12989/cac.2017.19.1.059
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Parthiban, T., Ravi, R., Parthiban, G.T., Srinivasan, S., Ramakrishnan, K.R. and Raghavan, M. (2005), "Neural network analysis for corrosion of steel in concrete", Corros. Sci., 47, 1625-1642. https://doi.org/10.1016/j.corsci.2004.08.011
- Sadowski, L. (2013), "Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks", Arch. Civil Mech. Eng., 13(1), 104-111. https://doi.org/10.1016/j.acme.2012.10.007
- Schmidt-Dohl, F. and Rostasy, F.S. (1999), "A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineralbuilding materials Part II. Experimental verification", Cement Concrete Res., 29(7), 1047-1053. https://doi.org/10.1016/S0008-8846(99)00094-0
- Steffens, A., Dinkler, D. and Ahrens, H. (2002), "Modeling carbonation for corrosion risk prediction of concrete structures", Cement Concrete Res., 32(6), 935-941. https://doi.org/10.1016/S0008-8846(02)00728-7
- Topcu, I.B., Boga, A.R. and Hocaoglu, F.O. (2009), "Modeling corrosion currents of reinforced concrete using Ann, automation in construction", Auto. Constr., 18, 145-152. https://doi.org/10.1016/j.autcon.2008.07.004
- Tu, J.V. (1996), "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes", J. Clin. Epidemiol., 49(11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9
- Ukrainczyk, N., Pecur, I.B. and Ukrainczyk, V. (2004), "Application of neural network in predicting damage of concrete structures cused by chlorides", International Symposium on Durability and Maintenance of Concrete Structures, 187-194.
- Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ann and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657
Cited by
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.479
- Prediction model for concrete carbonation depth using gene expression programming vol.26, pp.6, 2019, https://doi.org/10.12989/cac.2020.26.6.497
- Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2019, https://doi.org/10.12989/cac.2020.26.6.533
- Strength and strain modeling of CFRP -confined concrete cylinders using ANNs vol.27, pp.3, 2019, https://doi.org/10.12989/cac.2021.27.3.225
- Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods vol.27, pp.4, 2019, https://doi.org/10.12989/cac.2021.27.4.305
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2019, https://doi.org/10.12989/cac.2021.28.1.055