Acknowledgement
Supported by : Ministry of Science and Technology, Taiwan
References
- Babanajad, S.K., Gandomi, A.H., Mohammadzadeh, S.D. and Alavi, A.H. (2013), "Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming", Autom. Constr., 36, 136-144. https://doi.org/10.1016/j.autcon.2013.08.016
- Babu, K.G. and Rao, G.S.N. (1996), "Efficiency of fly ash in concrete with age", Cement Concrete Res., 26(3), 465-474. https://doi.org/10.1016/0008-8846(96)00011-7
- Baykasoglu, A., Gullu, H., Canakci, H. and Ozbakir, L. (2008) "Prediction of compressive and tensile strength of limestone via genetic programming", Exp. Syst. Appl., 35(1-2), 111-123. https://doi.org/10.1016/j.eswa.2007.06.006
- Baykasoglu, A., Oztas, A. and Ozbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Exp. Syst. Appl., 36(3), 6145-6155. https://doi.org/10.1016/j.eswa.2008.07.017
- Behzad, M., Asghari, K., Eazi, M. and Palhang, M. (2009), "Generalization performance of support vector machines and neural networks in runoff modeling", Exp. Syst. Appl., 36(4), 7624-7629. https://doi.org/10.1016/j.eswa.2008.09.053
- Berardi, L., Kapelan, Z., Giustolisi, O. and Savic, D. (2008), "Development of pipe deterioration models for water distribution systems using EPR", J. Hydroinf., 10(2), 113-126. https://doi.org/10.2166/hydro.2008.012
- Bhattacharya, M., Abraham, A. and Nath, B. (2001), "A linear genetic programming approach for modeling electricity demand prediction in Victoria", Proceedings of the Hybrid Information Systems, First International Workshop on Hybrid Intelligent Systems, Adelaide, Australia, 379-393.
- Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- Canakci, H., Gullu, H. and Dwle, M.I.K. (2018), "Effect of glass powder added grout for deep mixing of marginal sand with clay", Arab. J. Sci. Eng., 43(4), 1583-1595. https://doi.org/10.1007/s13369-017-2655-3
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129.
- Fiore, A., Quaranta, G., Marano, G.C. and Monti, G. (2016), "Evolutionary polynomial regression-based statistical determination of the shear capacity equation for reinforced concrete beams without stirrups", J. Comput. Civil Eng., 30(1), 04014111. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000450
- Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinf., 8(3), 207-222. https://doi.org/10.2166/hydro.2006.020b
- Gullu, H. (2012), "Prediction of peak ground acceleration by genetic expression programming and regression: A comparison using likelihood based measure", Eng. Geol., 141-142, 92-113. https://doi.org/10.1016/j.enggeo.2012.05.010
- Gullu, H. (2013), "On the prediction of shear wave velocity at local site of strong ground motion stations an application using artificial intelligence", B. Earthq. Eng., 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8
- Gullu, H. (2014), "Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom Ash", Eng. Appl. Artif. Intel., 35, 143-157. https://doi.org/10.1016/j.engappai.2014.06.020
- Gullu, H. (2015), "Unconfined compressive strength and freezethaw resistance of fine-grained soil stabilised with bottom ash, lime and superplasticizer", Road Mater. Pavement, 16(3), 608-634. https://doi.org/10.1080/14680629.2015.1021369
- Gullu, H. (2016), "Comparison of rheological models for jet grout cement mixtures with various stabilizers", Constr. Build. Mater., 127, 220-236. https://doi.org/10.1016/j.conbuildmat.2016.09.129
- Gullu, H. (2017a), "A new prediction method to rheological behavior of grout with bottom ash for jet grouting columns", Soil. Found., 57(3) 384-396. https://doi.org/10.1016/j.sandf.2017.05.006
- Gullu, H. (2017b), "A novel approach to prediction of rheological characteristics of jet grout cement mixtures via genetic expression programming", Neural Comput. Appl., 28, 407-420. https://doi.org/10.1007/s00521-016-2360-2
- Gullu, H. and Fedakar, H.I. (2017c), "On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence", Geomech. Eng., 12(3), 441-464. https://doi.org/10.12989/gae.2017.12.3.441
- Gullu, H. and Girisken, S. (2013), "Performance of fine-grained soil treated with industrial wastewater sludge", Environ. Earth Sci., 70, 777-788. https://doi.org/10.1007/s12665-012-2167-0
- Gullu, H., Canakci, H. and Al Zangana, I.F. (2017d), "Use of cement based grout with glass powder for deep mixing", Constr. Build. Mater., 137, 12-20. https://doi.org/10.1016/j.conbuildmat.2017.01.070
- Gullu, H., Cevik, A., Al-Ezzi, K.M. and Gulsan, M.E. (2019), "On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash", Constr. Build. Mater., 196, 594-610. https://doi.org/10.1016/j.conbuildmat.2018.11.140
- Hossain, K.M.A., Lachemi, M. and Easa, S.M. (2006), "Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action", Comput. Concrete, 3(6), 439-454. https://doi.org/10.12989/cac.2006.3.6.439
- Hossain, M.S., Ong, Z.C., Ismail, Z., Noroozi, S. and Khoo, S.Y. (2017), "Artificial neural networks for vibration based inverse parametric identifications: A review", Appl. Soft Comput., 52, 203-219. https://doi.org/10.1016/j.asoc.2016.12.014
- Ismail, A. and Jeng, D.S. (2011), "Modelling load-settlement behaviour of piles using high-order neural network (HON-PILE model)", Eng. Appl. Artif. Intell., 24(5), 813-821. https://doi.org/10.1016/j.engappai.2011.02.008
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, A Bradford Book, The MIT Press.
- Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008), "Damage detection of truss bridge joints using Artificial Neural Networks", Exp. Syst. Appl., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Muhammad, K., Mohammad, N. and Rehman, F. (2015), "Modeling shotcrete mix design using artificial neural network", Comput. Concrete, 15(2), 167-181. https://doi.org/10.12989/cac.2015.15.2.167
- Nagaraj, T. and Banu, Z. (1996), "Generalization of Abrams' law", Cement Concrete Res., 26(6), 933-942. https://doi.org/10.1016/0008-8846(96)00065-8
- Olofintoye, O., Otieno, F. and Adeyemo, J. (2016), "Real-time optimal water allocation for daily hydropower generation from the Vanderkloof dam, South Africa", Appl. Soft Comput., 47, 119-129. https://doi.org/10.1016/j.asoc.2016.05.018
- Oltean, M. and Dumitrescu, D. (2002), "Multi expression programming", Technical Report, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania.
- Oluokun, F.A. (1994), "Fly ash concrete mix design and the watercement ratio law", ACI Mater. J., 91(4), 362-371.
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059
- Ozbay, E., Oztas, A. and Baykasoglu, A. (2010), "Cost optimization of high strength concretes by soft computing techniques", Comput. Concrete, 7(3), 221-237. https://doi.org/10.12989/cac.2010.7.3.221
- Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253
- Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2017), "Neural network based approach for rapid prediction of deflections in RC beams considering cracking", Comput. Concrete, 19(3), 293-303. https://doi.org/10.12989/cac.2017.19.3.293
- Peng, C.H., Yeh, I.C. and Lien, L.C. (2009), "Modeling strength of high-performance concrete using genetic operation trees with pruning techniques", Comput. Concrete, 6(3), 203-223. https://doi.org/10.12989/cac.2009.6.3.203
- Popovics, S. (1990), "Analysis of the concrete strength versus water-cement ratio relationship", ACI Mater. J., 87(5), 517-529.
- Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/CAC.2017.20.1.031
- Sonebi, M., Grunewald, S., Cevik, A. and Walraven, J. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Concrete, 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.6.903
- Tran, D.H., Ng, A.W.M. and Perera, B.J.C. (2007), "Neural networks deterioration models for serviceability condition of buried storm water pipes", Eng. Appl. Artif. Intell., 20(8), 1144-1151. https://doi.org/10.1016/j.engappai.2007.02.005
- Tsai, H.C. (2009), "Hybrid high order neural networks", Appl. Soft Comput., 9, 874-881. https://doi.org/10.1016/j.asoc.2008.11.007
- Tsai, H.C. (2010), "Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with centerunified particle swarm optimization", Exp. Syst. Appl., 37, 1104-1112. https://doi.org/10.1016/j.eswa.2009.06.093
- Tsai, H.C. (2011), "Using weighted genetic programming to program squat wall strengths and tune associated formulas", Eng. Appl. Artif. Intell. 24, 526-533. https://doi.org/10.1016/j.engappai.2010.08.010
- Tsai, H.C. (2016), "Modeling concrete strength with high order neural networks", Neural Comput. Appl., 27, 2465-2473. https://doi.org/10.1007/s00521-015-2017-6
- Tsai, H.C. and Lin, Y.H. (2011), "Predicting high-strength concrete parameters using weighted genetic programming", Eng. Comput., 27(4) 347-355.
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. and Lien, L.C. (2009), "Knowledge discovery of concrete material using genetic operation trees", Exp. Syst. Appl., 36(3), 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004
Cited by
- Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2019, https://doi.org/10.12989/cac.2020.26.6.533
- A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2019, https://doi.org/10.12989/cac.2021.27.4.333